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ABSTRACT

Modern differential geometric methods are applied to com-
pute and analyze curvature quantities of the Permam anticline,
which is part of the Zagros fold and thrust belt in northern Iraq,
northeast of the city of Erbil. Because this particular anticline
is composed of, among others, weathering-resistant limestones,
the surface topography strongly resembles the antiformal fold
shape. This makes it an ideal area where numerical curvature
analysis, applied to Shuttle Radar Topography Mission digital
elevation models (DEMs), allows drawing not only geomorpho-
logical, but also tectonic, conclusions. The curvature analysis is
based on the computation of the Gaussian and mean curva-
tures and is used to classify the folded surface into eight geo-
logically relevant shapes (antiform, synform, plane, dome, basin,
and three types of saddles). The performed curvature analysis
investigates in detail the effects of two adaptable parameters:
the cutoffwavelength of the low-pass filter that is applied to the
DEM before curvature calculation and the curvature threshold
that is applied to the principal curvature values before the cal-
culation of the Gaussian and mean curvatures. The analysis
demonstrates that these two parameters strongly influence each
other, and that they together determine the information con-
tent and interpretability of the results. By choosing appropriate
parameter combinations, geomorphological-oriented studies
and tectonic-oriented studies are viable using the same DEM.
How tectonic-oriented studies can be used to determine frac-
ture patterns or densities in folded layers is discussed. Further
suggestions are made to combine curvature analysis of DEMs
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with similar studies applied to seismically mapped
surfaces in three-dimensional seismic data setswhere
erosion is absent.
INTRODUCTION

Geologic surfaces, such as the top of a sedimentary
formation, may be deformed into complex shapes,
which can be quantitatively described by differen-
tial geometry (e.g., surface curvature, convexity, lo-
cal maximums and/or minimums, saddle and in-
flection points). Curvature analysis has been used to
describe the geometry of geologic structures (Lisle
and Robinson, 1995; Pollard and Fletcher, 2005;
Mynatt et al., 2007; Fernandez-Martínez and Lisle,
2009; Lisle et al., 2010), to quantify strain (Samson
and Mallet, 1997; Johnson and Johnson, 2000), to
predict fracture orientations or densities (Hennings
et al., 2000; Stephenson et al., 2007), or to analyze
geomorphological features (Bergbauer and Pollard,
2003; Jordan, 2003). Most of these studies use the
Gaussian curvature, kG (i.e., the product of the two
principal curvatures), and/or the mean curvature,
kM (i.e., the average of the two principal curva-
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tures), to define the shape and orientation of the
geologic surface. By combining the information of
the Gaussian and mean curvatures, Mynatt et al.
(2007) introduced the so-called geologic curva-
ture, which describes eight fundamental shapes
(Figure 1) that are relevant for the description of
geologic structures (Roberts, 2001; Lisle, 2004;
Pollard and Fletcher, 2005).

The quantitative description of geologic sur-
faces has motivated several geophysical studies
with the aim of predicting rock properties of sub-
surface units. For example, particular geometric at-
tributes of geologic structures have been used for
fracture density prediction within hydrocarbon res-
ervoirs (Lisle, 1994; Fischer and Wilkerson, 2000;
Stephenson et al., 2007) or for automatic fault
detection (Lisle, 1994; Roberts, 2001; Bergbauer
et al., 2003). Based on these ideas, this article pre-
sents the analysis of the antiformal and synformal
structures of a part of the Zagros fold and thrust
belt by means of differential geometry. This moun-
tain chain contains 49%of the global fold-and-thrust
belt–related hydrocarbons and has, therefore, at-
tracted numerous recent studies (Lacombe et al.,
2007; Ries et al., 2007, and references therein).
Figure 1. Geologic curvature
classification based on the rela-
tion of Gaussian (kG) and mean
(kM) curvature (modified from
Mynatt et al., 2007) and color
scheme used in this article.
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The particular focus of this article is the curvature
analysis of digital elevation models (DEMs) of the
so-called simply foldedbelt in the northwest Zagros
in the Kurdistan region of Iraq. By systematically
varying two key parameters of the curvature cal-
culation, the geomorphological signals of various
wavelengths can be enhanced.
GEOLOGIC SETTING

The Zagros Mountains, which extend more than
1800 km (>1120 mi) from northern Iraq to the
Strait of Hormuz in Iran, are the result of the on-
going collision between the Eurasian and Arabian
plates, whose convergence began in the Late Cre-
taceous (Dewey et al., 1973; Dercourt et al., 1986).
The active north-south convergence between these
two plates is about 2 cm/yr and is partitionedwithin
the Zagros Mountains in a southwest-directed fold-
ing and thrusting, and northwest-southeast– and
north-south–trending dextral strike-slip faults (Sella
et al., 2002; Vernant et al., 2004). From the suture
zone toward the southwest, the Zagros belt con-
sists of four individual tectonic units (Falcon, 1961)
(Figure 2): (1) the Sanandaj-Sirjan metamorphic
zone, (2) the thrust-dominated imbricated zone,
(3) the simply folded belt, and (4) the foothill zone
with buried folds. The main Zagros thrust rep-
resents the suture zone and borders the imbricated
zone toward the northeast. The mountain front
fault is the southwestern boundary of the simply
folded belt, which has awidth of about 25 to 50 km
(∼15.6–31 mi) in northeastern Iraq (Jassim and
Goff, 2006).

This study focuses on the simply folded belt,
northeast of the city of Erbil, which is character-
ized by thin-skinned deformation of a 9- to 10-km
(5.6- to 6.2-mi)-thick sedimentary cover above a
Precambrian basement. Interestingly, major faults
Figure 2. (A) Map of the Republic of Iraq with the major tectonic units of the Zagros Mountains. (B) Map of the tectonic units in the
Kurdistan region in northeastern Iraq. Location and names of the major antiforms in the simply folded belt (modified from Reif et al.,
2011, used with permission of AAPG). MZT = Main Zagros thrust; MFF = mountain front fault.
Burtscher et al. 303



are widely absent in this region, and shortening is
accommodated by open, upright, and regularly
spaced folds, which strike northwest-southeast.
The shape of the folds ismainly subcylindrical with
wavelengths between 6 and 10 km (3.7–6.2 mi).
Most of the antiforms have a flat top resulting in
box-shaped folds with two axial planes dipping
northeast and southwest. Field measurements of
the folded sedimentary beddings suggest that the
folds are clearly asymmetric, with steeper southwest-
dipping forelimbs and shallower northeast-dipping
back limbs (Reif et al., 2011).

In the investigated area, the folded stratigra-
phy is composed of Cretaceous to Neogene sedi-
ments (Sissakian et al., 1997; Bretis et al., 2011).
The youngest folded formation is of Pliocene age,
which corroborates observations from the Iranian
part of the Zagros that the deformation in the sim-
ply folded belt started between 8 (Homke et al.,
2004) and 5 Ma (Allen et al., 2004). The folded
stratigraphy consists of alternating layers of more
competent rocks (limestones, dolomite, sandstones)
and less competent rocks (marls, shales). The dif-
ferences in composition of these lithologies result
in a considerable variation inweathering resistivity.
Therefore, the fold structures significantly control
the landscape evolution, and analysis of the topo-
graphic data allows drawing conclusions on the
underlying geologic structures. The most obvious
geomorphological observation in the field is that
the anticlines of the simply folded belt directly cor-
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respond to topographic ridges,whereas the synclines
are covered by Quaternary sediments (Figure 3).
In the following, the shapes of the anticlines are
investigated from DEM data with a particular focus
on the Permam anticline about 30 km (∼19 mi)
north-northeast of Erbil (Figure 4).
DESCRIPTION OF FOLDED SURFACES
USING DIFFERENTIAL GEOMETRY

To compute length, angles, and areas on an arbi-
trary curved surface, it is necessary to describe its
shape in space. A reasonable description of how
much a curved surface deviates from a planar sur-
face is given by the powerful mathematical notion
of curvature. Intuitively, the calculation of the nor-
mal curvature, k, at a given point on the surface
can be reduced to the calculation of the curvature
of all curves on the surface passing through this
point. Such curves are systematically studied by
the intersection of the curved surface with planes
normal to it. Such a study reveals that the curva-
ture at a given point on a surface is not constant,
but is a function of the direction in which it is
calculated. Most importantly, however, two dis-
tinct so-called principal curvature directions with
maximal and minimal curvature values (kmax and
kmin) exist. These two directions are orthogonal to
each other and, together with the two correspond-
ing principal curvature values, fully determine the
Figure 3. The Hareer anticline is mainly composed of massive to thick-bedded Cretaceous limestone with local dolomitization. The
topographic ridge corresponds directly to the antiformal geologic structure, whereas the synformal part is covered by Quaternary
sediments (frontal part of the picture). In the northwestern part of the structure, the topography is controlled by the bedding surface of the
folded sediments, but in the central and southeastern parts, the antiformal shape is strongly dissected by the fluviatile drainage system.
he Permam Anticline



shape of the surface at this point. For example, a
cylinder with radius, r, has a maximal curvature of
1/r along the circular sections and a minimal cur-
vature of 0 along the generators.
Fundamental Forms and Shape Operator

In modern differential geometry, the local shape
of a surface is characterized by the first and second
fundamental forms, I and II, respectively. The first
fundamental form, I, is the inner product on the
tangent space of the surface and, hence, quantifies
intrinsic properties of the surface. The second fun-
damental form, II, however, describes the change in
the normal direction and, hence, is a tool to examine
the extrinsic geometry of the surface. The ratio be-
tween the first and second fundamental form de-
fines the shape operator, L:

L ¼ I�1 × II ð1Þ

which describes the infinitesimal change of the nor-
mal vector along the surface. Provided that a local
description of a surface is available, the coefficients
of these three symmetric 2 × 2 tensor fields may
be computed at each point of the surface. The pre-
cisemathematical background for the computations
in this article is sketched in the Appendix and
elaborated in Pollard and Fletcher (2005).
Principal Curvatures

The shape operator, L, is the key quantity for
curvature computations because it determines the
normal curvature, kw, at a given point, p, on the
surface in direction, w:

kw ¼ IIðw;wÞ ¼ hw;LpðwÞi ð2Þ

The principal curvature directions at point p are
the eigenvectors of Lp. They form an orthonormal
basis on the tangent space, that is, the maximal and
minimal curvature directions are normal to each
other everywhere on the surface. The eigenvalues
of Lp correspond to the minimal and maximal cur-
vature values at point p, kmin, and kmax, respec-
tively. Principal curvatures are useful to quantify
the amount of folding and to identify fold axes and
generalized hinge lines (Mynatt et al., 2007; Lisle
et al., 2010). The computation of the principal cur-
vature directions and values on a digital surface
model using the shape operator, L, is straightfor-
ward to implement numerically.
Gaussian Curvature and Mean Curvature

To distinguish different geologic shapes, it is not
sufficient to just compute the absolute curvature
values. Qualitative descriptions and classifications
of geologic surfacesmake use of sign changes of the
principal curvature values. TheGaussian curvature

kG ¼ kmin × kmax ¼ detðLÞ ð3Þ

is an entirely intrinsic quantity of a curved surface.
For example, on perfectly cylindrical folds, one of
the two principal curvatures is always zero and,
hence, kG = 0. Therefore, the Gaussian curvature
Figure 4. The Shuttle Radar Topography Mission digital ele-
vation model of the Permam and Safeen anticlines.
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is a tool to detect noncylindrical shapes, including
strained zones and faults. The mean curvature

kM ¼ kmin + kmax

2
¼ trðLÞ

2
ð4Þ

singles out the dominant curvature value. Only
planes and perfect saddles have zero mean curva-
ture. In general situations, the mean curvature
highlights the orientation of the surface. Therefore,
kM is a useful quantity to distinguish synformal
from antiformal structures.
Geologic Curvature

The geologic curvature classification (Lisle and
Toimil, 2007; Mynatt et al., 2007) combines the
information from both the Gaussian curvature and
the mean curvature and, thus, successfully divides
geologic surfaces into areas of structural similarity
(Figure 1). Cylindrical fold shapes (synforms, anti-
forms, and planes) are determined by a vanishing
Gaussian curvature. A positive Gaussian curvature
implies that all curvature values have the same
sign, which is the case for dome and basin struc-
tures. Because the Gaussian curvature, however, is
an intrinsic quantity, it is not adequate to distin-
guish between differently aligned shapes in space.
The difference between predominantly convex and
predominantly concave situations can only be de-
termined by themean curvature. In geologic terms,
the mean curvature separates antiformal shapes
from synformal shapes.
Implementation to MATLAB

The curvature analysis of the Permam anticline is
based on the differential geometric methods and
the geologic curvature classification from Mynatt
et al. (2007). The DEMs are obtained from 3 arc-
second Shuttle Radar TopographyMission (SRTM)
data sets, where moderately sized null data holes
were patched by the program SRTMFill (3D Na-
ture, 2003). These processedDEMswere converted
to MATLAB data files using an adopted version of
the program GetSRTMData (Hölz, 2004). The
numerical curvature computations of the Permam
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anticline were performed using a modified version
of theMATLABscripts usedbyMynatt et al. (2007).
As such, the analyses in this article alsomake use of
a spectral filtering method for the DEMs and a
variable curvature threshold. A large part of the
discussion following the numerical curvature com-
putations for the Permam anticline is devoted to
both scale and threshold sensitivity.
Low-Pass Filters Applied to Topographic Data

Before curvatures are calculated, a low-pass filter
is applied to the topographic data set, as suggested
by Bergbauer and Pollard (2003). This allows sup-
pressing short-wavelength features in the topo-
graphic data, such as measurement inaccuracies
or very narrow river incisions. Also, by applying a
low-pass filter, structures with a long wavelength
can be analyzed without the interference of short-
wavelength structures. The separation of short-
wavelength surface undulations from the main
structural content is achieved by cutting off wave-
lengths shorter than the so-called cutoffwavelength,
s, by means of Fourier transform (Bergbauer et al.,
2003). By further increasing the cutoff wavelength,
it is also possible to suppress topographic features
that are caused by small-scale geomorphological
processes. This allows enhancing the large-scale
tectonic structures (e.g., anticlines) and separating
topographic features that are primarily caused by
geomorphological processes from those primarily
caused by tectonic processes.
Curvature Threshold

In many practical situations, the computed curva-
ture of a surface does not allow for a useful geologic
fold classification or interpretation. This is caused
by roughnatural surfaces,measurement errors, and
resolution restrictions of the DEM. To simplify the
classification and highlight the dominant structures
of naturally folded surfaces, an approximation by
cylindrical shapes (i.e., planes, synforms, antiforms;
Figure 1) is commonly sufficient. Shapes with only
a small deviation from a cylindrical shape are ap-
proximated by the corresponding cylindrical shape
using the curvature threshold, kt (Mynatt et al.,
he Permam Anticline



Figure 5.Mean curvature, kM, of the
Permam anticline calculated from the
Shuttle Radar Topography Mission
(SRTM) topographic data draped onto
the 2× exaggerated topography. For
the curvature calculation, different low-
pass filters (cutoff wavelength, s) are
applied. In A, no low-pass filter is ap-
plied (s < resolution of SRTM data).
In B and C, wavelengths smaller than
500 m (1640 ft) and 1500 m (4921 ft),
respectively, are deleted from the
SRTM data set. Note the different color
scale for the different panels. The
curvature threshold, kt, is set to zero.
Burtscher et al. 307



2007). Thereby, principal curvatures with an
absolute value below kt are set to zero:

if jkj < kt then k ¼ 0 ð5Þ

Saddle points with a shape close to a perfect
saddle are approximated by a perfect saddle using
the alternative condition jkmax þ kminj < kt in the
above statement. Subsequently, a non-zero curva-
ture threshold also affects the mean, Gaussian, and
geologic curvatures, leading to bigger areas of cy-
lindrical geologic shapes. Thus, by increasing the
value of kt, structures are simplified with respect to
the geologic curvature classification.

CURVATURE ANALYSIS OF THE
PERMAM ANTICLINE

To analyze the Permam anticline, the freely avail-
able SRTMdatawith 3 arc-second resolution (∼90m
[∼295 ft]) was used. The Permam anticline is par-
ticularly well suited for a curvature analysis based
on topographic data because the level of erosion is
generally within the relatively competent lime-
stone of the Pilaspi Formation (Reif et al., 2011).
Therefore, the Permam anticline resists erosion
more effectively than other regional anticlines, and
the topography generally follows the structure of
the anticline (Bretis et al., 2011; Reif et al., 2011).
Scale Sensitivity

By applying a low-pass filter with different cutoff
wavelengths to the SRTM data set, structures on
different scales can be made visible. Figure 5 shows
the mean curvature, kM, for applied cutoff wave-
lengths of s = 1 m (3.3 ft) (no low-pass filter), s =
500 m (1640 ft), and s = 1500 m (4921 ft). A neg-
ative mean curvature highlights a concave topog-
raphy (synclines and basins), and a positive mean
curvature highlights a convex topography (anti-
clines and domes).With no low-pass filter applied
(Figure 5A), the Permam anticline is dominated
by erosion structures (narrow river incisions) per-
pendicular to the fold axis, but the large-scale anti-
clinal structure is not very visible. This pattern
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suggests that the Permam anticline is relatively
flat in its hinge area, almost forming a topographic
plateau, and eroded at its limbs by incisions ar-
ranged perpendicular to the fold axes. At the nose
of the antiform, the radial drainage pattern is clearly
visible, but the incisions are not as strongly devel-
oped as on the fold limbs, leading to smaller curva-
ture values. In some places, more competent layers
lying on top of less competent layers (e.g., carbon-
ates on top of marls) show stronger resistivity to
erosion and, hence, form hogbacks (i.e., homo-
clinal ridges that form because of lithologic con-
trasts and different weathering rates). The outlines
of these hogbacks (e.g., at the limbs of the Safeen
anticline) have sharp edges and, therefore, are
nicely visualized by large positive kM values. Using
a cutoff wavelength for the low-pass filter of s =
1500m (4921 ft) (Figure 5C) strongly reduces the
influence of local erosion structures at the limbs
of the Permam anticline, and the large-scale anti-
clinal structure is emphasizedby positive kM values.
The core of the Safeen anticline is also very visible
in the same way, but the hogbacks on the flanks
of the Safeen anticline are still present. Through-
out the entire investigation area, the northwest-
southeast–trending fold traces are hardly inter-
rupted by erosion structures perpendicular to this
trend. The intermediate cutoff wavelength of s =
500m (1640 ft) reveals a mixture between the two
extreme cases described above. This intermediate-
value low-pass filter is used for the following
investigation.
Sensitivity on Threshold Value
(Curvature Threshold)

Using the geologic fold classification based on the
full value range for the Gaussian and mean cur-
vatures (Mynatt et al., 2007; Figure 1) results in
Figure 6C. Although the Gaussian (Figure 6A)
and mean curvatures (Figure 6B) themselves re-
veal several details, the geologic fold classification
appears rather tessellated and is virtually unusable.
Therefore, the threshold value kt was applied to
the principal curvatures kmin and kmax before cal-
culating the Gaussian, mean, and geologic curva-
tures. Figure 6 shows the effect of an increasing
he Permam Anticline



threshold value on the Gaussian, mean, and geo-
logic curvatures. For the Gaussian and mean cur-
vatures, an increasing threshold value corresponds
to a whitening of the curvature maps. In other
words, information appears to be lost with an in-
creasing threshold value. However, the geologic
curvature map (Figure 6C, F, and I) shows the op-
posite effect: the tessellated map becomes clearer
with an increasing threshold value. At low thresh-
old values (Figure 6C), all geologic fold classifica-
tions occur with a short space between each other,
which leads to the tessellated and less informative
appearance. With an increasing threshold value,
two effects occur: (1) larger and more system-
atically connected areas are classified as the same,
and (2) the cylindrical classifications (antiform, syn-
form, plane) appearmore commonly than the three-
dimensional (3-D) classifications (dome, basins, all
types of saddles). These two effects lead to a more
coherent geologic curvaturemap, which is easier to
interpret than the tessellated original map with a
small threshold value.Note that all panels in Figure 6
are calculated with the same cutoff wavelength of
the low-pass filter. Therefore, the readability of the
Figure 6. Gaussian, mean, and geologic curvature of the Permam Anticline calculated from the Shuttle Radar Topography Mission
(SRTM) topographic data draped onto the 2× exaggerated topography. For the curvature calculation, different threshold values, kt (1/m),
are applied. (A–I) A low-pass filter with a cutoff wavelength of s = 500 m (1640 ft) is applied to the SRTM data set.
Burtscher et al. 309



geologic curvature maps is independent of the reso-
lution or scale of the topographic data, but is solely
caused by the increase in the threshold value, kt.

DISCUSSION

Classical geologic descriptions of folded surfaces
rely on the assumption that folds are cylindrical.
Geologic surfaces, however, do not follow a perfect
antiform-synform pattern, and a lot of the geo-
metric information is lost if simplistic descriptions
are used. By using remote sensing data, such as
SRTM, large areas can be studied by 3-D curvature
analysis. The presented curvature analysis of sur-
face data of the Permam and Safeen anticlines
demonstrates that the calculated mean, Gaussian,
and geologic curvatures can be used for both geo-
morphological and tectonic interpretations. Cru-
cial for separating topographic features of different
wavelengths is a proper adjustment of the param-
eters that influence the spectral content of the to-
pographic data (i.e., low-pass filter applied to the
DEM) and the readability (i.e., the threshold ap-
plied to the principal curvatures) of the analysis.
Separation of Geomorphological and
Structural Features

In the presented example, small-scale geomorpho-
logical processes, such as river incisions, dominate
the mean curvature distribution up to wavelengths
of about 500 m (∼1640 ft) (Figure 5A, B). On this
scale, high positive and negative curvature values
are associated with intense erosion and high future
erosion potential (e.g., Simpson, 2009). Areaswith
a high positive mean curvature are more exposed
to weathering and, hence, more prone to erosion,
whereas sedimentation primarily occurs in areas
with a negative mean curvature. On a larger scale,
the synclines already appear flat (low negative cur-
vature) as they are covered by Quaternary sedi-
ments. In the same study area, small-scale surface
drainage patterns have been used successfully by
Bretis et al. (2011) to study fold growth and evo-
lution.Curvature analysis can support and simplify
such field-based studies. Indeed, the observations
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of the drainage pattern and of the hogbacks based
on the mean curvature distribution made in this
study are in accordance with the field-based ob-
servations in the same area (Bretis et al., 2011).

The large-scale tectonic structures are best stud-
ied by cutting off wavelengths shorter than 1500 m
(4921 ft) (Figure 5C). On this scale, some areas of
positive mean curvature correspond to anticlinal
hinges (e.g., the Permam anticline). However, a
tectonic interpretation solely based on curvature
analysis can be misleading because erosional sur-
face features are also present on the large scale
(i.e., >1500m [>4921 ft]). For example, the Safeen
anticline emerges as three subparallel ridges of
high positive curvature values. The two external
ridges correspond to hogbacks, and only the central
ridge corresponds to the anticlinal hinge. Hence,
the geologic curvature classification (Figure 1) of
the surface topography does not necessarily cor-
respond to the actual tectonic structures. Geologic
background knowledge and fieldwork are neces-
sary to correctly interpret the curvature analysis.

On the large scale, the surface topography gen-
erally follows the tectonic anticlinal structures in
the study area, whereas on the small scale, the
topography is dominated by a strong erosional
overprint. However, the wavelength spectra of
these two different types of structures (i.e., tec-
tonic vs. geomorphological) clearly overlap. There-
fore, a complete separation cannot be achieved,
but an emphasis of either of the two is feasible by
suppressing certain wavelengths. The wavelength
threshold appropriate for analyzing either tectonic
or geomorphological structure depends on the re-
gional geology and erosional conditions, and no
general rule can be given here. We, therefore, rec-
ommend that one carefully studies curvature dis-
tributions with various parameter settings and re-
lates them to observations in the field.
Geologic Curvature

The geologic curvature becomes more useful with
increasing threshold values because larger andmore
systematically connected areas are classified as the
same geologic shapes. Therefore, the quality of a
geologic curvature map mainly depends on two
he Permam Anticline



parameters: (1) the cutoff wavelength, s, of the
low-pass filter and (2) the threshold value, kt. To
demonstrate the effect of the combination of
these two parameters, the geologic curvature is
calculated using two different optimal parameter
couples. In Figure 7A, the cutoff wavelength, s, is
chosen to enhance small-scale geomorphological
features and the threshold value, kt, is selected to
highlight geomorphological features with strong
curvatures. Resulting from this combination, ero-
sional features, such as deeply incised river valleys
or sharp ridges, are strongly enhanced. In Figure 7B,
the parameters were selected to highlight topo-
graphic features related to the larger scale tectonic
fold structures, which have a wavelength of about
6 to 10 km (∼3.7–6.2 mi) and an amplitude of 0.5
to 1 km (0.3–0.6mi). Erosional featureswith amuch
shorter wavelength, especially the narrowly spaced
drainage pattern perpendicular to the fold axes, are
successfully filtered out by this combination of pa-
rameters. The geologic curvature map predomi-
nantly displays antiforms, synforms, andplanes. Both
the Permam and the Safeen anticlines are correctly
outlined by the geologic curvaturemaps. The hinge
areas are relatively broad because of the boxlike
shape of the anticlines. The limbs of the Permam
anticline aremapped as planes, reflecting the shape
of the relatively straight limbs. The Safeen anti-
cline is flanked by two straight subparallel struc-
tures that aremapped as antiforms.However, these
structures are not antiforms, but hogbacks flanking
the antiform. This confirms that a tectonic inter-
pretation solely based on curvature analysis can be
misleading, as discussed above. The synclines to
the northwest and southeast of the Permam anti-
cline are mapped as planes, which is a result of the
Quaternary deposit in the synformal areas.

Although the tectonic and the geomorpholog-
ical signatures cannot be separated completely, as
in the case of mean curvature analysis, these ex-
amples of two different optimal parameter config-
urations may be used for different applications.
Figure 7A may be used to analyze the river net-
work and to draw conclusions on, for example, the
magnitude of the river incision or the develop-
ment of the drainage network during fold growth.
Figure 7Bmay also be used to analyze the large-scale
folding style or to correlate these surface data with
reflection seismic data of the underlying structures.
Applications to Subsurface Data

Curvature analysis of the surface topography is a
simple and quick ad hoc tool to visualize and quan-
tify geologic structures and draw first conclusions
regarding geologic processes. Although DEM anal-
ysis cannot replace fieldwork and should not be
considered independently, curvature analysis can
serve as a guide for further investigations and, hence,
render it useful for the hydrocarbon industry. Note
that curvature analysis is certainly not restricted to
topographic data. For example, it can equally well
be applied to seismically mapped surfaces in 3-D
seismic data sets (Roberts, 2001; Mynatt et al.,
2007). Obviously, erosional effects do not play a
Figure 7. Geologic curvature of the Permam anticline calculated from the Shuttle Radar Topography Mission topographic data draped
onto the 2× exaggerated topography. For the curvature calculation, different low-pass filters (cutoff wavelength, s, here in m) and
different threshold values, kt (here in 1/m), are applied.
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role when analyzing seismically mapped surfaces
with short wavelengths, which allows a true struc-
tural geologic interpretation on different scales using
differential geometry. If it is assumed that layers of
rock deform like elastic plates so that layer-parallel
stresses are directly related to the curvature of the
folded surface, curvature analysis might be used to
predict the location and characteristics of fracture
networks in folded rock layers (e.g., Stearns and
Friedman, 1972, Fischer et al., 1992; Storti and
Salvini, 2001).Moreover, a detailed 3-D curvature
analysis of seismically mapped surfaces could be
used for locating potential traps, studying their ge-
ometry (spill points, etc.) and estimating the max-
imal possible reservoir volume of a trap (Mynatt
et al., 2007). Such direct applications to seismic
data reveal the great potential of curvature analysis
in view of hydrocarbon exploration. To gain insight
in the vertical continuation of geologic structures, it
is suggested that studies of seismic reflectors are
combined with curvature analysis of topographic
data above the seismic 3-D cube.

CONCLUSIONS

Curvature analysis of DEMs from the Zagros fold
and thrust belt in northern Iraq demonstrates the
importance of adjusting two key parameters that
control the visualization of topographic features
of various wavelengths. First, a low-pass filter ap-
plied to the topographic data allows the suppres-
sion of features below a critical wavelength. Sec-
ond, a threshold value controls how the geologic
curvature classes are mapped in the investigated
area, that is, strongly alternating versus larger con-
nected areas of the same geologic curvature classes.
Both parameters can be adjusted to either display
small-scale geomorphological features with high
curvature values (like incised river gorges or edges
of hogbacks) or large-scale bending of surfaces (e.g.,
the shape of an antiform). Because the filter and
threshold value influence each other, it is crucial,
but not straightforward, to adjust them properly
for the highest information content of the results.
Structural interpretation solely based on curvature
312 Tectonic Geomorphological Investigations of Antiforms in t
analysis can be misleading without geologic back-
ground knowledge and fieldwork.

The Gaussian curvature alone carries the least
information. Themean curvature is a useful tool to
investigate the orientation pattern of geomorpho-
logical features. Combined, the geologic curvature
is an ideal mapping tool to intuitively display the
shape characteristics of geologic structures.
APPENDIX: MATHEMATICAL
BACKGROUND FOR CURVATURE
COMPUTATIONS

Let ex ¼ ð1;0; 0Þ; ey ¼ ð0;1;0Þ; ez ¼ ð0;0;1Þ� �
denote the

standard basis in the 3-D Euclidean space R3. Suppose U is
an open subset of the Euclidean plane R2. Let u:U→ R3 be a
local parameterization of a (hyper)surface, M, given by

uðs; tÞ ¼ sex + tey + zðs; tÞez

Thus, for any fixed point (s, t) of the plane, z(s, t) de-
scribes the elevation of the surface and u(s, t) = (s,t,z(s,t)) the
corresponding point in space. For any given point, p, on the
surface, M, the tangent space to the surface shall be denoted
by TpM. Two linearly independent tangent vectors at each
point of the surface are naturally provided by the derivatives
of the parameterization, u (the indices s and t indicate the
corresponding partial derivatives of u and z):

us ¼ @u
@s

¼ ð1;0; zsÞ and ut ¼ @u
@t

¼ ð0; 1; ztÞ

They automatically form a basis for the tangent spaces,
TpM, at all points, p, of the surface and are, therefore, useful
quantities for further tensor calculations.

The first fundamental form, I, is a tensor field defined by
the inner product of the tangent space (which is canonically
induced from the standard inner product of the 3-D Eu-
clidean space):

Ip v;wð Þ ¼ v;wh i for v;w 2 TpM

This is an inherently intrinsic quantity of the surface, M.
The extrinsic information is essentially contained in the Gauss
map, n, a vector field that assigns to each point, p, on the
surface the positively oriented unit normal vector, np. The
shape operator, L, is the tangent map, Tn of n and, hence,
quantifies the infinitesimal directional change of these normal
vectors, n, along the surface. It is crucial for curvature com-
putations because the normal curvature, kw, at a point, p, in
direction w 2TpM is given by

kwðpÞ ¼ w;TpnðwÞ
� � ¼ w;LpðwÞ

� �
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The second fundamental form, II, is precisely this infini-
tesimal change of the normal vectors, n, to the surface in the
tangential directions, that is

IIpðv;wÞ ¼ v;TpnðwÞ
� �

for v;w 2 TpM

Using the local parameterization, u, introduced above, the
first and second fundamental forms can be expressed with re-
spect to the tangent basis vectors us and ut and second deriva-
tivesuss;ust ¼ uts;utt and normal vector n ¼ us�ut

us�utj j, respectively:

I ¼ E F
F G

� �
and II ¼ e f

f g

� �

with coefficients

E ¼ us;ush i ¼ 1+ z2s

e ¼ � uss; nh i ¼ � detðus;ut;ussÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG� F2

p ¼ � zssffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ z2s + z2t

p

F ¼ us;uth i ¼ ut ;ush i ¼ zs + zt

f ¼ � ust ; nh i ¼ � detðus;ut ;ustÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG� F2

p ¼ � zstffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ z2s + z2t

p

G ¼ us;uth i ¼ 1+ zt2

g ¼ � utt ; nh i ¼ �detðus;ut ;uttÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG� F2

p ¼ � zttffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ z2s + z2t

p

and normal vector n ¼ us�ut
us�utj j ¼ us�utffiffiffiffiffiffiffiffiffiffiffiffi

EG�F2
p . It can be shown that

the shape operator is the ratio between I and II, that is,

L¼ I�1 × II ¼ 1
EG� F2

eG� fF fG� gF
fE � eF gE � fF

� �

The eigenvalues and eigenvectors of L are the extreme
normal curvature values, kmin and kmax, and the corre-
sponding principal curvature directions. Alternatively, these
quantities can be computed from the Gaussian curvature, kG,
and mean curvature, kM:

kG ¼ det L ¼ eg � f 2

EG� F2

kM ¼ tr L
2

¼ Ge� 2fF +Eg
2ðEG� F2Þ

kmax;min ¼ kM �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2M � kG

q
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