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a b s t r a c t

The neutral line in a buckle fold, dividing areas of outer-arc extension from areas of inner-arc shortening,
is a fundamental concept in structural geology. In the past, folds have been constructed kinematically
from a given neutral line geometry using the tangential longitudinal strain pattern. In this study,
a mechanical finite element model is used to numerically buckle single-layer folds with Newtonian and
power-law viscous rheology. Two neutral lines can be distinguished, the incremental neutral line (zero
layer-parallel strain rate) and the finite neutral line (zero finite layer-parallel strain). The former develops
first and migrates through the layer from the outer towards the inner arc ahead of the latter. Both neutral
lines are discontinuous along the fold and terminate either at the bottom or top interface of the layer. For
decreasing viscosity ratio between layer and matrix and for decreasing initial amplitude, the neutral lines
develop later during folding and, for some cases, no neutral line develops. The dynamical behaviour of
the neutral lines is similar for Newtonian and power-law viscous rheology if the viscosity ratio is large,
but substantially different for small viscosity ratios. The results are discussed in light of fold-related
structures, such as outer-arc-extension structures and inner-arc-shortening structures.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In structural geology, the concept of the neutral line is funda-
mental for characterizing folds. Descriptions and sketches can be
found in almost every classical and modern structural geology
textbook (e.g., Ramsay, 1967; Ramsay and Huber, 1987; Price and
Cosgrove, 1990; Twiss and Moores, 2007; Fossen, 2010). Usually,
the neutral line is described as the line in the fold profile, on which
the principal strains are zero (Ramsay, 1967). In other words, the
neutral line separates areas of layer-parallel extension in the outer
arc of the fold (referred to as outer-arc extension) fromareas of layer-
parallel shortening in the inner arc (referred to as inner-arc short-
ening). Indeed, in natural folds so-called outer-arc-extension struc-
tures and inner-arc-shortening structures can be observed. For
example, Fig. 1 shows a folded limestone multilayer sequence
exhibiting a thrust in the innermost layer, which reflects the short-
ening in the inner arc. A common outer-arc-extension structure is
a set of layer-perpendicular extensional fractures, an example of
which is shown in Fig. 2 in a quartzwacke-layer. The layer-parallel
extension in the outer arc is evident from the opening direction of
the fractures. Other outer-arc-extension structures and inner-arc-
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ll rights reserved.
shortening structures are, for example, stylolites or the develop-
mentof anenhanced foliation (RamsayandHuber,1987). Fora recent
extensive review on themechanical and kinematical understanding
and interpretation of folds, see Hudleston and Treagus (2010).

The neutral line has been used for the kinematical analysis and
construction of folds by assuming an idealized strain pattern called
tangential longitudinal strain (TLS; Ramsay, 1967; Ramsay and
Huber, 1987; Bobillo-Ares et al., 2000, 2004; Bastida et al., 2003,
2005; Bobillo-Ares et al., 2006). Different versions of TLS can be
found in the literature, all with slightly different sets of assump-
tions. One fundamental assumption common to all versions of TLS
is a neutral line that is continuous along the fold (i.e., from the axial
plane trace of an antiform to the axial plane trace of the adjacent
synform). This assumption is an implicit part of the TLS strain
pattern, because the fold is constructed from a given neutral line
geometry. However, Gairola (1978) and Currie et al. (1962) showed
that the neutral line, at least in experimentally folded layers, is not
continuous along the fold. For a more complete kinematical fold
analysis, other strain patterns, such as flexural flow or homoge-
neous pure-shear strain, are usually applied on top of TLS (Bastida
et al., 2003; Bobillo-Ares et al., 2004). TLS is also referred to as
orthogonal flexure (Twiss and Moores, 2007) and neutral line
folding (Lisle et al., 2009) and has been applied, for example, to the
kinematical analysis of symmetrical folds (Hudleston and Holst,
1984; Toimil and Fernandez, 2007), asymmetrical folds (Aller
et al., 2010) and chevron folds (Bastida et al., 2007).
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Fig. 1. Folded Triassic limestoneemarl multilayer sequence near Bad Eisenkappel,
Austria [Lat. 46.450857�/Lon. 14.477277�]. Shortening in the inner arc of the multilayer
fold is evident from an inner-arc-shortening structure, i.e., a brittle thrust of approx.
20 cm offset. Picture courtesy of Lea Hilty.
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In contrast to kinematical fold analysis methods, mechanical
models take the mechanical and rheological behaviour of the fol-
ded rocks into account. Structures inside the folding layer develop
self-consistently according to the applied continuum mechanics
equations. Therefore, mechanical models of folding do not a priori
assume a neutral line geometry, but the neutral line results from
the modelled buckling process. Mechanical models, in particular
numerical finite element (FE) models, have been used to study the
neutral line in buckle folds. Early FE-studies (e.g., Dieterich, 1969;
Dieterich and Carter, 1969; Shimamoto and Hara, 1976) visualized
the orientation of the principal stresses or the principal strains,
fromwhich a separation between outer-arc extension and inner-arc
shortening is evident. Hudleston and Lan (1993) and Hudleston and
Lan (1995) calculated the aspect ratio of the finite strain ellipses on
the axial plane trace to quantify the outer-arc extension and the
inner-arc shortening. In addition, Lan and Hudleston (1995) defined
two neutral lines according to Ramsay (1967), i.e., the finite neutral
line (FNL) and the incremental neutral line (INL), and they found
that on the axial plane trace both neutral lines migrate through the
Fig. 2. Folded Carboniferous quartzwacke-layer (Lechmann et al., 2010) near Almog-
rave, Portugal [Lat. 37.658761/Lon. e8.802215]. Extension in the outer arc of the fold is
evident from outer-arc-extension structures, i.e., quartz-filled extensional fractures
perpendicular to the folded layer.
layer from the outer towards the inner arc with increasing short-
ening. However, the geometry of the neutral lines away from the
axial plane trace has only been sketched schematically (Hudleston
and Lan, 1995; Lan and Hudleston, 1995; also Twiss and Moores,
2007; Hudleston and Treagus, 2010).

This study applies the FE method to simulate the dynamical
behaviour of the neutral lines in a two-dimensional mechanically
calculated buckle fold. The paper starts with a short introduction to
the used model setup and it is explained in detail how the INL and
the FNL are calculated from the numerical simulations. Both neutral
lines are visualized and quantitatively described for single-layer
buckle folds with either Newtonian or power-law viscous
rheology. The dynamical behaviour of the two neutral lines is dis-
cussed in light of interpreting fold-related structures, such as outer-
arc-extension structures and inner-arc-shortening structures.
2. Model setup

Because for this study, folds are assumed to be cylindrical (i.e.,
no geometry change along the fold axis), it is sufficient to use
a model that describes the deformation in two dimensions (2D)
with a plane-strain formulation. The rheological behaviour of both
the folding layer and the surrounding matrix is incompressible
power-law viscous, given by the constitutive equations in the
x1ex2-coordinate system,

sij ¼ �dij
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In Eqs. (1)e(3) sij are the three independent components of the
symmetrical 2D stress tensor, p is the pressure (i.e., negative mean
normal stress), vi are the two components of the 2D velocity vector,
heff is the effective dynamic viscosity, h0 is the reference dynamic
viscosity, i.e., the dynamic viscosity for a given reference strain rate
(1 in the present study), _3II is the second strain rate invariant, and n
is the power-law exponent. For n¼ 1 the material is linear viscous
(Newtonian). Index k in Eq. (1) implies a summation from 1 to 2.
Gravity in the Stokes equations is set to zero, because it is assumed
that gravitational effects are negligible for the folds considered in
this study.

The 2D numerical model domain (Fig. 3) is bounded by an
initially rectangular box of width l0/2. The boundary conditions
are: no traction and no boundary-perpendicular velocity (immobile
free slip wall) at the lower and left boundaries; no traction (free
surface) at the top boundary; and no traction with a prescribed
horizontal velocity (moving free slip wall) at the right boundary.
The prescribed horizontal velocity is modified at every time step to
enforce a constant background shortening strain rate, _3ext. In the
middle of themodelling box a horizontal layer of initial thickness h0
has a higher reference viscosity than the surrounding matrix
(h0,L>h0,M; Table 1) and perfectly welded interfaces. To allow the
folding instability to develop, both interfaces have the same sinu-
soidal initial geometry with a small amplitude, A0/h0<<1 (Table 1).
In this study only upright symmetrical folds with dominant initial
wavelength under horizontal shortening are considered. In such
folds the vertical axial plane represents a traction-free surface. Due
to this symmetry reason only half a wavelength is simulated (from
the axial plane trace of an antiform to the axial plane trace of the



Fig. 3. Sketch (not to scale) showing the model domain, the initial conditions, and the
boundary conditions for the numerical simulations. For more details see Table 1. In the
lower-right corner the symbol used in later figures is shown, which indicates the
power-law exponents of the layer and the surrounding matrix.
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adjacent synform) and the initial width of the modelling box, l0/2,
is equal to half of the dominant wavelength, ld, which is a function
of h0, h0,L, h0,M, nL, and nM (Fletcher, 1974). However, for clarity
reasons one entire wavelength is visualized in later figures (from
the axial plane trace of one synform to the next). To avoid boundary
effects, the lower and upper boundaries of the modelling box are
set outside the zone of contact strain (Table 1). To generalize the
results, all physical model parameters are non-dimensionalized
using three characteristic values (Table 1).

3. Neutral line calculation and strain quantification

The FE model used to study the neutral lines in a progressively
folding layer is described in Appendix A. Each FE simulation
provides, among others, the velocity gradient tensor, _H with
components _Hij ¼ vvi=vxj, at every integration point in the
modelling domain and for every time step of the simulation. The
strain rate tensor, _3, is calculated as _3¼ ð _Hþ _H

TÞ=2, where the
superscript T denotes the transpose of tensor _H. The deformation
gradient tensor, F (Haupt, 2002), at a given time step, m, is
Table 1
Model parameters used for numerical FE simulations.

Property Symbol Normalized value

Reference dynamic viscosity of matrix h0,M Characteristic value
Initial thickness of layer h0 Characteristic value
Applied external strain rate _3ext Characteristic value
Reference dynamic viscosity of layer h0,L/h0,M [5,10,15,20,30,40,50,

70,100,150,200]
Power-law exponent of matrix nM [1,3,5]
Power-law exponent of layer nL [1,3,5]
Initial amplitude of layer A0/h0 [0.001,0.1]
Dominant wavelength (¼initial

wavelength, l0¼ 2� initial
model width)

ld/h0 fct(h0,L, h0,M, nL,nM)
(Fletcher 1974)

Constant C (Fig. 3) C/h0 15
calculated from the velocity gradient tensor and the deformation
gradient tensor of the preceding time step using the Euler inte-
gration method:

Fm ¼ Fm�1
�
Iþ Dt _Hm

�
(4)

where I is the identity matrix and Dt is the time increment. The
deformation gradient tensor maps any vector from its initial
undeformed state to its finite deformed state after time step m. For
quantifying the finite strain the left CauchyeGreen tensor, B
(Haupt, 2002), is used:

B ¼ FFT (5)

All of these tensors are defined in the x1ex2-coordinate system.
However, for calculating the neutral lines in the folding layer, the
relevant quantities are the layer-parallel (i.e., tangential) strain rate
and the layer-parallel finite strain. A standard tensor rotation
(Ramsay and Huber, 1983) transforms the tensors from the global
x1ex2-coordinate system to the local (i.e., different for every inte-
gration point) coordinate system consisting of the layer-parallel
and the layer-perpendicular directions. At a given integration
point of the layer the rotation angle is calculated as the weighted
average of the two dip-angles at the closest points on the lower and
upper interface of the folding layer. Using the rotated tensors two
neutral lines can be defined.

(1) The incremental neutral line (INL) is the zero-contour line of
the layer-parallel strain rate. It separates areas of incremental
layer-parallel shortening from areas of incremental layer-
parallel extension.

(2) The finite neutral line (FNL) is the zero-contour line of the finite
layer-parallel strain. It separates areas of finite layer-parallel
shortening from areas of finite layer-parallel extension.

The definitions of both neutral lines are different than the
original definition of Ramsay (1967), i.e., the zero-contour line of
the principal strain rates (INL) and of the principal finite strain
(FNL). However, in a mechanically calculated symmetrical buckle
fold with finite viscosity ratio between the layer and the
surrounding matrix, the only place where these values can be zero
is the axial plane trace. Therefore, Ramsay’s definition of the neutral
lines itself prevents the existence of the neutral lines, and only
a finite and incremental neutral point on the axial plane trace can
exist. Ramsay’s definition can be applied in kinematical fold anal-
ysis using the idealized TLS strain pattern, but in mechanical
models the definition given above has to be used. On the axial plane
trace, the two definitions coincide.

For visualizing the finite strain in the numerical simulation
snapshots, finite strain ellipses are plotted (Frehner and
Schmalholz, 2006). They are calculated from the deformation
gradient tensor. The two principal axes of a finite strain ellipse are
given by the eigenvectors (direction) and the square roots of the
eigenvalues (length) of the left CauchyeGreen tensor. In the
following figures, two different measures for the background
shortening are used. First and more intuitive, the shortening (i.e.,
negative elongation) is used:

e ¼ ðld � lÞ=ld (6)

where l is the current wavelength of the fold. Second, Schmalholz
(2006) showed that for a Newtonian rheology the amplification
history of a single-layer fold can be generalized, even up to high
amplitudes, using the so-called scaled stretch,

SS ¼ ld
l
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where a0 is the dimensionless initial growth rate of the fold
calculated using the thick-plate formula of (Fletcher, 1977). There-
fore, the scaled stretch is used for the Newtonian cases as the
second measure for the background shortening.

4. Results

4.1. Newtonian single-layer folds

The simulation snapshots of a single-layer fold experiment
using a Newtonian rheology, a viscosity ratio of 100 between the
layer and the surrounding matrix, and an initial amplitude-to-
thickness ratio of 0.1 is shown in Fig. 4. The fold hinge is of
special importance, because this is the most common location for
inner-arc-shortening structures or outer-arc-extension structures
in natural folds. Therefore, Fig. 4 (upper-left diagram) also shows
the positions of both neutral lines together with the layer-parallel
strain rate evolution on the axial plane trace. The INL develops at
a shortening of about 7% (SSz 1) and first encloses only a small area
at the outer arc with termination points at the outer interface of the
layer. It migrates through the layer from the outer towards the
inner arc with increasing shortening. On the axial plane trace, this
migration is fast at the beginning (e.g., 45% through the layer after
ez 20%), slows down when the INL is close to the middle of the
layer, and accelerates again towards the end of the simulation. The
FNL develops after the INL at a shortening of about 15% (SSz 1.1). It
generally migrates slower than the INL from the outer towards the
inner arc and stays behind the INL during the entire folding history.
Therefore, there are always areas between the two neutral lines
that exhibit a finite layer-parallel shortening but already experience
an incremental layer-parallel extension. The fraction of the axial
Fig. 4. Simulation snapshots of a progressively shortened Newtonian single-layer fold wit
normalized by the absolute value of the externally applied strain rate, _3ext. The INL is drawn
major axis and a passive, initially orthogonal marker-grid are plotted. The upper-left diagra
axial plane trace, normalized by the current thickness of the layer at the hinge, with incre
different simulation snapshots are plotted (For interpretation of the references to colour in
plane trace between the two neutral lines increases with increasing
shortening and reaches around 50% of the total thickness of the
layer towards the end of the simulation.With increasing shortening
and fold amplification the termination points of the neutral lines
switch from the outer to the inner interface of the layer. This
happens at a shortening of about 31% (SSz 1.35) for the INL and
much later for the FNL at a shortening of about 70% (SSz 3.1). In the
late stages of the folding process both neutral lines enclose a small
area at the inner arc. Even though this area of layer-parallel
shortening becomes very small, it does not fully disappear up to
the studied shortening of 74% (SSz 3.6). It is important to notice
that both neutral lines are discontinuous along the fold except for
the instant, when the termination points switch from the outer to
the inner interface.

Similar numerical simulations to the one presented in Fig. 4
were conducted, but with different viscosity ratios between the
folding layer and the surrounding matrix (Table 1). Fig. 5 shows the
positions of the neutral lines on the axial plane trace with
increasing shortening (Fig. 5a) and scaled stretch (Fig. 5b) for these
simulations. Because the scaled stretch depends on the material
parameters (Eq. (7)), it is different for every simulation. For
viscosity ratios larger than 40, the migration of the neutral lines is
similar, except that the neutral lines appear later for smaller
viscosity ratios (Fig. 5a). Plotted versus the scaled stretch (Fig. 5b),
the migration curves of the INLs collapse on almost one single
curve, particularly from the first appearance (SSz 1) up to a scaled
stretch of about 1.4. For decreasing viscosity ratios, the migration
distance of the FNL from the outer arc into the layer decreases.
Accordingly, the fraction of the axial plane trace that exhibits
a finite layer-parallel shortening and an incremental layer-parallel
extension increases with decreasing viscosity ratio. For
h the indicated modelling parameters. Colours represent the layer-parallel strain rate
as a thick black line. The FNL is drawn as a thick red line. Finite strain ellipses with their
m shows the layer-parallel strain rate and the positions of the two neutral lines on the
asing shortening (and scaled stretch). The dots indicate the shortening for which the
this figure legend, the reader is referred to the web version of this article.)



Fig. 5. Positions of the two neutral lines on the axial plane trace of a Newtonian single-
layer fold, normalized by the current thickness of the layer at the hinge, with
increasing shortening (a) and scaled stretch (b). The legend in (a) and the modelling
parameters in (b) are valid for both subfigures.

Fig. 6. Shortening value at the first appearance of the neutral lines in the single-layer
fold for all simulations using a Newtonian rheology.
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comparison, the neutral line migration curves of a simulation with
a much smaller initial amplitude (A0/h0¼ 0.001) and a viscosity
ratio of 100 are shown in Fig. 5 as dashed lines. The neutral lines
appear at a significantly larger shortening compared to the simu-
lation with the same viscosity ratio but with larger initial ampli-
tude. However, in Fig. 5b the INL collapses onto the same, almost
unique curve as all other simulations with a viscosity ratio larger
than 40.

For viscosity ratios smaller than 40 the neutral line migration at
the fold hinge is different than described above for viscosity ratios
larger than 40. The major difference is the INL, whose migration
from the outer towards the inner arc eventually changes direction.
The migration direction inverts at a shortening of about 59%
(SSz 2.1) for a viscosity ratio of 30 down to a shortening of about
44% (SSz 1.3) for a viscosity ratio of 10. Despite this inversion, the
INL first appears at a scaled stretch of about 1 (Fig. 5b), as for higher
viscosity ratios. From Fig. 6, which shows the shortening at the first
appearance of the neutral lines for all simulations using a New-
tonian rheology, it is evident that both neutral lines appear later for
decreasing viscosity ratio and for decreasing initial amplitude. This
is in accordance with the observation of Ramberg (1964) that both
a decreasing viscosity ratio and a decreasing initial amplitude lead
to more layer-parallel shortening prior to buckling initiation. For an
initial amplitude-to-thickness ratio of 0.1 and viscosity ratios lower
than 15, no FNL develops up to the maximal studied shortening of
70% and the layer stays under finite layer-parallel shortening
throughout the entire folding simulation. The same is true for an
initial amplitude-to-thickness ratio of 0.001 and viscosity ratios
lower than 50. For viscosity ratios lower than 40, even the INL does
not develop. In this case, the fold amplification is so small that the
layer-parallel shortening strain rate always exceeds the potential
outer-arc extension.
4.2. Power-law viscous single-layer folds

A series of single-layer folding simulations have been performed
with a power-law viscous behaviour in either the layer or both the
layer and the surrounding matrix. The simulations exhibit a refer-
ence viscosity ratio of either 20 or 100. For a reference viscosity
ratio of 100 (Fig. 7a), the migration of the INL at the fold hinge is
similar for all simulations and, between 15% and 60% shortening,
the INL-migration curves collapse on almost one single curve. The
INL in the Newtonian case appears significantly later (ez 7%) than
in all power-law cases (e< 3%). For a shortening larger than 60%
a Newtonian matrix leads to an accelerated migration of the INL
when the INL migrates away from the middle of the layer, while for
a power-law viscous matrix the migration does not accelerate
towards the end of the simulations. The migration of the FNL is
similar for all power-law simulations, but significantly different
than the Newtonian case, for which the FNL appears later than for
all power-law cases.

The neutral line migration curves at the fold hinge for a refer-
ence viscosity ratio of 20 (Fig. 7b) are very different for the different
simulations using a power-law viscous rheology. The neutral line
migration curves do not collapse on an almost unique curve as for
a reference viscosity ratio of 100. Common to all cases of a reference
viscosity ratio of 20 is an inversion of the migration direction of the
INL. Independently of the power-law exponent of the matrix, this
inversion happens later for a power-law exponent of the layer of 3
compared to 5. For a visual comparison, Fig. 8 shows simulation
snapshots of the simulations used to produce Fig. 7 at a shortening
of 30% and 60%. Note that the dominant wavelength, and therefore
the initial width of the model, is a function of the power-law
exponent of both the layer and the matrix (Fletcher, 1974) and is
different for each simulation (indicated in Fig. 8). For a reference
viscosity ratio of 100, the fold geometries and the neutral line
migration curves (Fig. 7) are similar for the simulations using



Fig. 7. Positions of the two neutral lines on the axial plane trace of different power-law
single-layer folding simulations, normalized by the current thickness of the layer at the
hinge, with increasing shortening. The reference viscosity ratio between the layer and
the surrounding matrix is 100 (a) or 20 (b). The vertical lines indicate the shortening
values used in Fig. 8.
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different power-law exponents. For a reference viscosity ratio of 20
the fold geometry and the neutral line geometries are more
complex than for a reference viscosity ratio of 100 and they can be
very different for different applied power-law exponents. For
example, at a late stage in the folding history (e.g., e¼ 60%, right
column in Fig. 8), multiple INL can develop along the axial plane
trace. For these cases the INL alreadymigrates towards the outer arc
of the fold (Fig. 7). For a Newtonian matrix and a power-law
exponent in the layer of 3, the INL is closer to the outer arc than
the FNL. The area between the two neutral lines exhibits finite
layer-parallel extension and incremental layer-parallel shortening.
If the power-law exponent in the layer is increased to a value of 5,
the INL already reached the outer arc at a background shortening of
60%. In this case, almost the entire axial plane trace experiences
incremental layer-parallel shortening.

5. Discussion

The presented study shows that in a folding layer two neutral
lines have to be distinguished, the incremental neutral line and the
finite neutral line. Their dynamical behaviour and their positions in
the layer are different from each other. For natural fold-related
structures, such as outer-arc-extension structures or inner-arc-
shortening structures, both of these neutral lines are relevant. For
example, a common outer-arc-extension structure is a set of layer-
perpendicular extensional fractures (Fig. 2). Such fractures open if
the layer-parallel stress is tensile and exceeds the tensile strength
of the folding layer. In the ideal case of a viscous layer the instan-
taneous deviatoric stress is proportional to the strain rate (Eq. (1)),
but the total stress is also influenced by the pressure (overburden,
pore-fluid pressure). Therefore, whether an extensional outer-arc
fracture opens and how deep into the layer it penetrates may be
related, but is not directly proportional to the position of the INL.
The same applies to the inner-arc thrust (Fig. 1), whose initializa-
tion also depends on the instantaneous stress state. After their
initialization, the progressive growth of such fold-related struc-
tures (i.e., amount of opening of extensional outer-arc fractures or
net slip of inner-arc thrust) may be attributed to the cumulative
strain, and therefore to the FNL, but a direct proportionality is also
unlikely. Another common fold-related structure is the develop-
ment of a foliation in the hinge area. The foliation can be perpen-
dicular to the layer in the inner arc or parallel to the layer in the
outer arc (Ramsay, 1967; Ramsay and Huber, 1987). In both cases
the foliation is commonly assumed to reflect the finite strain state.
Therefore, fold-related foliation may be attributed to the FNL.

In the presented numerical experiments, the neutral lines have
only been considered in homogeneous isotropic layers, and the
development of inner-arc-shortening structures and outer-arc-
extension structures has not been modelled explicitly. However,
the state of stress, strain and strain rate within the layer can be
modified by these structures. For example, the opening of exten-
sional outer-arc fractures modifies the stress state (Jäger et al.,
2008) and therefore also modifies the state of strain and strain
rate, or the development of a fold-related foliation introduces
anisotropy in the layer and therefore changes the dynamical folding
behaviour (Kocher et al., 2006). Such effects influence both the INL
and the FNL, which in turn influence the further development of
fold-related structures. This feedback mechanism has to be further
investigated to fully understand the complex dynamical behaviour
of the neutral lines in real rocks. However, already for the simple
case of homogeneous isotropic layers, the presented study provides
a mechanics-based insight into some of the complexities of the
neutral lines.

Common to all different versions of TLS for the kinematical fold
analysis (Bobillo-Ares et al., 2000, 2004, 2006; Bastida et al., 2003;
Toimil and Fernandez, 2007; Lisle et al., 2009; Aller et al., 2010) is
the assumption of a neutral line that is continuous along the fold.
However, the presented FE simulations show that in a mechanical
model of buckle folds none of the two neutral lines is continuous
along the fold. Indeed (Toimil and Griera, 2007) showed that
numerically modelled fold geometries cannot be kinematically
reproduced by TLS alone. Usually, additional kinematical models,
such as flexural flow or homogeneous pure-shear strain, are
applied in sequence to TLS (e.g., in the FoldModeler-software;
Bobillo-Ares et al., 2004) for a complete kinematical analysis of
folds. As a result, the final kinematically constructed folds do not
exhibit a continuous neutral line anymore (Bastida et al., 2003).
While layer-parallel shortening prior to buckling initiation is an
important mechanism (Ramberg, 1964) in both nature and the FE
simulations, Hudleston et al. (1996) showed that flexural flow is an
unlikely strain pattern in natural single-layer folds. TLS alone is
a valid approximation of the strain pattern in folds with a large
viscosity ratio to the surrounding matrix if the fold is close to
parallel. The advantage of the kinematical fold analysis is the
simplicity of the calculation rules to quantify and visualize the
strain pattern and to calculate the shortening accumulated in
natural folds. However, in addition to the kinematical study, the
mechanical understanding of natural folds should be targeted.
Mechanical and kinematical modelling approaches may improve



Fig. 8. Simulation snapshots of different power-law single-layer folding simulations after a shortening of 30% and 60%. The reference viscosity ratio between the layer and the
surrounding matrix is 20 (two right columns) or 100. Colours represent the layer-parallel strain rate normalized by the absolute value of the externally applied strain rate, _3ext. The
INL is drawn as a thick black line. The FNL is drawn as a thick red line. Finite strain ellipses with their major axis and a passive, initially orthogonal marker-grid are plotted. The
dominant wavelength is indicated for each simulation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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one another, which will lead to better tools for reconstructing and
mechanical and rheological understanding of natural folds.

In nature, folds are three-, rather than two-dimensional.
Consequently, the description of neutral lines is not sufficient, but
neutral surfaces have to be defined. However, many natural folds
are close to cylindrical. In this case the neutral surfaces are also
cylindrical and can be described by the neutral lines. For the more
general case of non-cylindrical folds, the neutral surface can
assume complex three-dimensional shapes. However, the investi-
gation of such complex shapes was not the focus of the presented
study and remains to be done in the future. Also, the presented
study is limited to symmetrical folds with dominant initial wave-
length. But this is a relevant geometry, because natural folds can
sometimes be approximated as symmetrical folds, in particular in
the hinge region. However, the dynamical behaviour of the neutral
lines in asymmetrical and more irregular folds will be of great
interest, but also remains to be done in the future.

6. Conclusions

From numerical FE simulations of the dynamical growth of
single-layer buckle folds two neutral lines can be calculated and
visualized: the incremental neutral line and the finite neutral line.
The former is the zero-contour line of the layer-parallel strain rate;
the latter is the zero-contour line of the finite layer-parallel strain.
After their initialization at the outer arc of the fold hinge, both
neutral lines migrate continuously towards the inner arc, whereas
the INL migrates ahead of the FNL. For decreasing viscosity ratio
between the folding layer and the surrounding matrix and
decreasing initial amplitude, the neutral lines develop later during
the folding process and, in some cases, no FNL or even none of the
neutral lines develop and no extension occurs in the outer-arc. Both
neutral lines are not continuous along the fold, but terminate either
at the top or bottom interface of the folding layer. This contradicts
the fundamental assumption of a continuous neutral line of the TLS
strain pattern for kinematical fold analysis. For high reference
viscosity ratios between the layer and the surrounding matrix (e.g.,
100), the dynamical behaviour of the neutral lines inNewtonian and
power-lawviscous folds is similar. For small viscosity ratios (e.g., 20),
the neutral lines in power-law viscous folds are substantially
different for different power-law exponents, and different than the
Newtonian case. In nature, fold-related structures can develop, such
as inner-arc-shortening structures (e.g., enhanced foliation, thrusts)
or outer-arc-extension structures (e.g., extensional fractures). Their
development may depend on the position and the dynamical
behaviour of one or both neutral lines in the fold.
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Appendix A

An FE model has been self-developed (implementation in MAT-
LAB) that solves the 2D plane-strain continuum mechanics equa-
tions for slowly deforming (i.e., no inertia terms) materials in the
absence of gravity. TheNewtonianversion of the code is described in
detail in Frehner and Schmalholz (2006). Both the power-law and
the Newtonian version of the code are successfully benchmarked
versus the analytical thick-plate folding solution of Fletcher (1974)
and Fletcher (1977), respectively. Quickly summarized, the numer-
ical implementation comprises a Lagrangian numerical grid con-
sisting of isoparametric quadrilateral Q9/3-elements (Zienkiewicz
and Taylor, 2000), a mixed velocity-pressure-penalty formulation
of the governing equations using a Galerkin-approach (Hughes,
1987), and an Uzawa iteration (Pelletier et al., 1989) to enforce
incompressibility. Different element integration schemes have been
tested, and it was found that for the obtained distortion of the
elements, a numerical integration on nine GausseLegendre quad-
rature points (Bathe, 1996) is sufficient. A higher number of quad-
rature points does not improve the results significantly. For the
power-law version of the code, a Picard-iteration is implemented
to converge to the correct solution (Schmalholz et al., 2008).

Supplementary material

An animated version of Figure 4 can be found as supplementary
material in the online version of this article at doi:10.1016/j.jsg.
2011.07.005.
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