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Summary

Many seismic surveys are carried out in areas with porous or fractured rocks containing
fluids, e.g. volcanic areas or hydrocarbon reservoirs. Therefore, the effects of fluids in
porous or fractured rocks on the propagation of seismic waves are important to under-
stand. In this thesis three such phenomena are investigated numerically, namely

• scattering at heterogeneities,
• Stoneley guided waves reflected and scattered at crack tips and
• oscillations on the pore–level due to surface tension effects.

The presented phenomena exhibit a multiscale character because seismic wavelengths can
be orders of magnitude different from the objects that cause the phenomena, i.e. pores or
cracks. Numerical modeling of such multiscale problems can be approached in different
ways. On one hand, effective medium and mixture models can be used that approximate
the small scale processes with effective material parameters and incorporate them into
larger scale wave propagation models. On the other hand, direct numerical simulations
can be used that fully resolve the small scale processes. Both approaches are followed in
this thesis.

• Scattering of a plane P–wave at a circular object of a similar size as the P–wave’s
wavelength is modeled in two dimensions with different numerical techniques. The
circular object is numerically fully resolved and the results are compared with an
analytical solution. The goal is to compare numerical accuracies of the different
methods for later use in direct numerical simulations. It is found that the finite
element method is most suitable for spatial discretization of such problems due to
the unstructured numerical mesh.
• The reflection of Stoneley guided waves at the tip of a crack is investigated with

direct numerical simulations in two dimensions using the finite element method.
The reflection coefficient lies between 43 % and almost 100 % and depends on the
fluid filling the crack and on the crack geometry. The part of the Stoneley guided
wave that is not reflected is scattered at the crack tip and P– and S–waves are
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emitted into the surrounding rock. The radiation pattern of these elastic body
waves is described in detail for different model setups.

• Microscale oscillations within a rock can arise from non–wetting fluid blobs in par-
tially saturated pores and cracks. When such fluid blobs are out of equilibrium,
surface tension forces act as the restoring forces for the oscillations. Other expla-
nations for internal oscillations in a rock can be given, e.g. Stoneley guided waves
propagating back and forth along a finite crack. Such microscale oscillations are
approximated and coupled to the macroscale wave equation. The resulting equa-
tions are solved in one dimension with the finite difference method. Results show
that internal oscillations introduce a strong velocity dispersion around the reso-
nance frequency and temporarily modify the frequency content of a propagating
wave. Energy is transferred between the internal oscillations and the wave.

This thesis covers a few aspects of fluid–rock interaction relevant for seismic wave prop-
agation. For this, no existing models, such as the Biot model, are applied but direct
numerical simulations and a newly developed continuum model are used. The thesis
ends by discussing the applicability of the results to natural situations. Tremor–signals
are observed for example around volcanic conduits or above hydcrocarbon reservoirs. The
narrow frequency band of these signals may be explained, among other explanations, by
oscillatory effects in the subsurface due to Stoneley guided waves that fall into resonance
or due to surface tension–induced resonances of non–wetting fluids.
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Zusammenfassung

Seismische Untersuchungen werden oft in Gebieten mit porösen oder zerklüfteten Ge-
steinen, die Fluide enthalten, durchgeführt, wie zum Beispiel in vulkanischen Gebieten
oder über Kohlenwasserstofflagerstätten. Deshalb ist es wichtig die Effekte dieser Fluide
auf die seismische Wellenausbreitung zu verstehen. Drei solche Phänomene werden in der
vorliegenden Dissertation numerisch untersucht, nämlich

• die Streuung an Heterogenitäten,
• die Reflexion und Steuung von geleiteten Stoneley–Wellen (Englisch: Stoneley gui-

ded Waves) an der Spitze von Klüften und
• durch Oberflächenspannungs–Effekte hervorgerufene Oszillationen im Porenraum.

All diese Phänomene umfassen mehrere Grössenordnungen. Übliche seismischeWellenlän-
gen sind in der Regel um Grössenordnungen unterschiedlich im Vergleich zu den Objek-
ten, die diese Phänomene hervorrufen, wie zum Beispiel Poren oder Klüfte im Gestein.
Für die numerische Modellierung solcher Phänomene stehen verschiedene Ansätze zur
Auswahl. Einerseits gibt es Effektiv–Medium– und Mischungs–Modelle, welche die klein-
räumigen Prozesse mit effektiven Materialparametern vereinfachen und in grossräumige
Wellenausbreitungs–Modelle einbinden. Andererseits können direkte numerische Simula-
tionen verwendet werden, welche die kleinräumigen Prozesse detailiert auflösen. In der
vorliegenden Dissertation werden beide Ansätze verwendet.

• Die Streuung einer ebenen P–Welle an einem runden Objekt wird mit verschiede-
nen numerischen Methoden in zwei Dimensionen modelliert. Dabei hat das runde
Objekt eine vergleichbare Grösse wie die Wellenlänge der P–Welle und das numeri-
sche Gitter löst das Objekt vollständig auf. Das Ziel dieser Studie ist ein Vergleich
der numerischen Genauigkeiten der verschiedenen Methoden für spätere direkte
numerische Simulationen. Zum Vergleich wird eine exakte analytische Lösung her-
an gezogen. Es stellt sich heraus, dass für die räumliche Auflösung dieser Art von
Problemstellungen die Finite Elemente Methode am geeignetsten ist, da sie ein
unstrukturiertes numerisches Gitter verwendet.
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• Die Reflexion von geleiteten Stoneley–Wellen an der Spitze von Klüften wird mit
direkten numerischen Simulationen unter Verwendung der Finite Elemente Me-
thode in zwei Dimensionen untersucht. Der Reflexionskoeffizient liegt zwischen 43
% und nahezu 100 %. Dieser Wert hängt vom Fluid in der Kluft und von der
Geometrie der Kluft ab. Ein Teil der geleiteten Stoneley–Welle wird jedoch nicht
reflektiert sondern an der Spitze der Kluft gestreut. Die Abstrahlcharakteristik der
dabei ins imliegende Gestein ausgestrahlten P– und S–Wellen wird für verschiedene
Modellkonfigurationen im Detail beschrieben.
• Oszillationen im Porenraum können durch nichtnetzende Flüssigkeiten in teilgesät-

tigten Poren oder Klüften hervorgerufen werden. Beim Auslenken solcher Flüssig-
keiten aus dem Gleichgewicht, wirkt die Oberflächenspannungskraft als die rück-
treibende Kraft. Es sind auch andere Ursachen für Gesteins–interne Oszillationen
denkbar, wie zum Beispiel eine geleitete Stoneley–Welle, die entlang einer Kluft hin
und her läuft. Eine vereinfachte Formulierung solcher kleinräumiger Oszillationen
werden mit der grössräumigen Wellengleichung gekoppelt. Die resultierenden Glei-
chungen werden mit der Finite Differenzen Methode im eindimensionalen Raum
gelöst. Die Simulationen zeigen, dass die Gesteins–internen Oszillationen den Fre-
quenzgehalt von seismischen Wellen vorübergehend verändern können. Ebenfalls
rufen die Oscillationen eine starke Geschwindigkeitsdispersion um die Resonanz-
frequenz hervor. Es findet ein Energieaustausch zwischen den Gesteins–internen
Oszillationen und den sich ausbreitenden Wellen statt.

Die vorliegende Dissertation behandelt einige Aspekte der Interaktion zwischen Fluiden
und Gesteinen, welche für die Ausbreitung von seismischen Wellen relevant sind. Dabei
kommen keine existierenden Modelle (wie z.B. die Biot Theorie) zur Anwendung. Viel
mehr werden direkte numerische Simulationen und ein neu entwickeltes Kontinuum–
Modell verwendet. Zum Schluss der Dissertation folgt eine Diskussion über die Anwend-
barkeit der Resultate auf natürliche Situationen. Zum Beispiel werden in vulkanischen
Gegenden und über Kohlenwasserstofflagerstätten oft Tremorsignale beobachtet. Das en-
ge Frequenzband dieser Signale könnte unter anderem mit Oszillations–Effekten im Er-
dinneren erklärt werden, wie zum Beispiel geleitete Stoneley–Wellen, die in Resonanz
geraten wenn sie einer Kluft entlang hin und her laufen oder aber Oszillationen im Poren-
raum aufgrund von Oberflächenspannung, die auf nichtnetzende Flüssigkeiten wirkt.
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1 Introduction

Many near–surface rocks contain fluids in the pore space or in fractures, for example
in volcanic areas, below hydrothermal fields or in hydrocarbon reservoirs. Such geolog-
ical settings are of particular interest because of either commercial potential or natural
hazard assessment. Accordingly, seismic surveys are often carried out in areas where
rocks contain fluids. Therefore, understanding the effects of fluids on the propagation of
seismic waves is of great importance for the interpretation of seismic data. A number of
phenomena are known to arise from the presence of fluid–filled cavities in the rock. The
phenomena relevant for wave propagation include but are not limited to

• wave–induced fluid flow due to pressure–differences between adjacent pores
(Bourbie et al., 1987; Carcione, 2001),

• occurence of a second compressional wave when the fluid and the rock move
out of phase (Bourbie et al., 1987; Carcione, 2001),
• Stoneley guided waves propagating along fractures

(Ferrazzini and Aki, 1987; Korneev, 2008),
• oscillations due to interfacial tension forces acting on non–wetting fluid blobs

trapped in cavities (Hilpert et al., 2000),
• scattering of body waves at cavities

(Sanchez-Sesma and Iturraran-Viveros, 2001; Krüger et al., 2005) and
• attenuation of body waves due to viscous damping

(Bourbie et al., 1987; Carcione, 2001).

Depending on the frequencies used in a seismic survey and on the size of the cavities
under study (from the pore scale to fracture length to the size of magma chambers),
wavelengths can be orders of magnitude different from these cavities. In other words, the
fluid–rock interaction is a multiscale problem, which makes it difficult to study. When
the wavelenths are of the same order as the size of the cavities analytical expressions
for some of the listed phenomena can be derived, but only for simple geometries. For
example, Korneev (2008) derived analytical expressions for Stoneley guided waves that
propagate along an infinitely long crack with constant thickness filled with a viscous fluid
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or Liu et al. (2000) derived analytical expressions for scattering of waves at a circular
heterogeneity. However, for real pore or fracture geometries analytical solutions become
too complicated or even impossible to derive.

For wavelengths much larger than the cavities continuum models can be used. They ap-
proximate microscale processes with effective parameters and incorporate them into wave
propagation models. For example, Korneev et al. (2004) added a diffusion–term to the
wave equation to model dissipation “bearing in mind that the true physical attenuation
mechanisms are still unclear”. A more elaborate continuum model is for example the Biot
model (Biot, 1962) that uses a Darcy–type term to model fluid flow between adjacent
pores. However, common to all continuum models is the averaging of material behavior
of the fluid (or multiple fluids) and the rock in a representative volume. This averaging
leads to effective material parameters that are then used to approximately describe the
microscale process. However, the averaging also lets the interfaces between the fluid (or
multiple fluids) and the rock disappear and a number of phenomena related to interfaces
are not considered, e.g. microscale scattering at heterogeneities, Stoneley guided waves
or interfacial tension between different fluids.

Exactly these phenomena are adressed in this thesis. This is mainly done with numerical
simulations using self–developed codes. Two different approaches for investigating fluid–
rock interaction are followed:

• Direct numerical simulations resolve the small scale cavities and therefore include
phenomena related to interfaces. This approach is choosen for the study of scat-
tering and of Stoneley guided waves. Numerical accuracy is ensured by comparing
the numerical results with analytical solutions for simple geometries. Then, more
complex geometries are studied, for which no analytical solutions are available and
numerical simulations are indispensable.
• A continuum model is newly developed that include microscale oscillations due

to interfacial tension acting on non–wetting fluid blobs trapped in cavities. The
model is used for analytical studies and for numerical simulations of rocks exhibiting
internal oscillations.

Because of the multiscale character of the investigated problems, numerical simulation
“presents a major computational challenge (Korneev, 2008)”. Therefore, numerical as-
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pects are a major aspect of this thesis. For both direct numerical simulations and sim-
ulations using an effective continuum model different numerical methods are available
(Kelly and Marfurt, 1990; Carcione et al., 2002; Cohen, 2002), for example the finite dif-
ference method (Smith, 1985; Moczo et al., 2007) or the finite element method (Bathe,
1996; Zienkiewicz and Taylor, 2000). In the course of this thesis it will be shown that
the different numerical methods have advantages and disadvantages depending on the
particular problem under study.

1.1. Thesis Organization

Chapters 2 – 4 of this thesis are written as individual papers to be published in peer–
reviewed journals. Therefore, they are somewhat independent from each other. Each
of these chapters contain the sequence of subchapters commonly used in papers, i.e.
introduction, methods, results, discussion and conclusions. References are also given at
the end of each chapter. The different chapters are organized in the following way:

Chapter 2 presents a numerical accuracy study. A two–dimensional scatteing problem
is solved numerically with different methods and the results are compared with an exact
analytical solution. This is done to identify the most suitable method for direct numerical
simulations performed later in Chapter 3. The focus lies much more on the numerical
aspect than on the physical aspect of scattering. This chapter was published in Physics
of the Earth and Planetary Interiors 171 (2008).

Chapter 3 presents a study of Stoneley guided waves that are reflected and scattered
at the tip of a crack. Reflection coefficients are evaluated and radiation patterns of
the scattered part of the Stoneley guided waves are described in detail. This is done
by highly resolving the crack using the finite element method and directly simulate the
propagation, reflection and scattering of the Stoneley guided wave. This chapter is
submitted to Geophysics.

Chapter 4 presents a one–dimensional continuum model that couples microscale oscil-
lations with the macroscale wave equation. The resulting equations are analyzed analyt-
ically and solved numerically using the finite difference method to investigate the effect
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of internal oscillations within a rock on the propagation of waves. This chapter was
published in Geophysical Journal International 176 (2009).

Chapter 5 is a discussion of the over–all thesis results. It brings together and discusses
the interrelation of the results of the individual Chapters 2 – 4. It also discusses possible
applications of the results.

Chapter 6 presents the general conclusions of this thesis.

Appendix A explains in detail the governing equations for elastic and visco–acoustic
media in two dimensions. These two material behaviors are used in Chapters 2 and 3 for
the solid rock and for the fluid filling the circular inclusion (Chapter 2) and the crack
(Chapter 3), respectively.

Appendix B explains the finite difference method and the corresponding self–developed
numerical code used in Chapter 2 in more detail. The governing equations for elastic
media and inviscid fluids (acoustic media) are solved with the finite difference method.

Appendix C explains the finite element method and the corresponding self–developed
numerical code used in Chapters 2 and 3 in more detail. The governing equations for
elastic media and viscous fluids (visco–acoustic media) are solved with the finite element
method.

Appendix D shows the resonant behavior of a circular object when a wave is scattered
at the object. This phenomenon is known as resonant scattering and is not explained in
Chapter 2 because the focus of Chapter 2 lies on the numerical aspects of the scattering
problem.

1.2. Related work

This thesis is a part of a bigger research project, out of which a number of publications
emerged. The project was motivated by observations of low–frequency tremor–like signals
above hydrocarbon reservoirs, often referred to as hydrocarbon microtremor, reported
by Dangel et al. (2003), Holzner et al. (2005), Bloch and Akrawi (2006), Suntsov et al.
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(2006), Graf et al. (2007) and Walker (2008). The frequency content of the ever–present
seismic wavefield seemed to be different above hydrocarbon reservoirs compared to areas
withouth hydrocarbons. However, more systematic measurements and data analysis and
especially a better understanding of the potential underlying physical mechanisms was
necessary.

On the data analysis side, Lambert et al. (2008) developed attributes of passive seismic
surface measurements. For a survey in Austria some of these attributes correlated with
assumed reservoir outlines projected to the surface. However, it remained unclear if this
correlation is due to signals from the reservoir or due to other, e.g. surface influences.

Steiner et al. (2008) showed the possibility of numerically back–propagating very similar
surface measurements into the subsurface. This method was called Time Reverse Mod-
eling (TRM) and the application to a survey in Austria showed some good localizations
of reservoir areas in depth.

On the theoretical side, Quintal et al. (2009) derived an approximate formula for the min-
imum value of the quality factor in heterogeneously saturated porous rocks and showed
that the reflection coefficient due to attenuation contrast between a reservoir and the
surrounding rocks can be strongly frequency dependent.

Holzner et al. (2009) presented a numerical study of microscale oscillations of non–wetting
fluid blobs due to surface tension. The surface of the fluid blob was tracked numerically
and surface tension forces were calculated. It was shown that the motion of the fully
resolved fluid blob can be approximated with a linear harmonic oscillator equation.

Finally, Saenger et al. (2009) presented an extensive hydrocarbon microtremor survey in
Mexico. The survey design, the data processing steps and the data analysis are explained
in detail. The final results are presented as maps of the calculated seismic attributes,
which correlated quite well with known reservoir outlines projected to the surface.
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2 Comparison of finite difference and finite

element methods for simulating

two–dimensional scattering of elastic waves

Abstract

Two–dimensional scattering of elastic waves in a medium containing a circular het-
erogeneity is investigated with an analytical solution and numerical wave propagation
simulations. Different combinations of finite difference methods (FDM) and finite ele-
ment methods (FEM) are used to numerically solve the elastodynamic wave equations.
Finite difference and finite element techniques are applied to approximate both the time
and space derivatives and are combined in various ways to provide different numerical
algorithms for modeling elastic wave propagation. The results of the different numerical
algorithms are compared for simulations of an incident plane P–wave that is scattered
by a mechanically weak circular inclusion whereby the diameter of the inclusion is of
the same order than the P–wave’s wavelength. For this scattering problem an analytical
solution is available and used as the reference solution in the comparison of the different
numerical algorithms. Staircase–like spatial discretization of the inclusion’s circular
shape with the finite difference method using a rectangular grid provides accurate
velocity and displacement fields close to the inclusion boundary only for very high
spatial resolutions. Implicit time integration based on either finite differences or finite
elements does not provide computational advantages compared to explicit schemes. The
best numerical algorithm in terms of accuracy and computation time for the investigated
scattering problem consists of a finite element method in space using an unstructured
mesh combined with an explicit finite difference method in time. The computa-
tional advantages and disadvantages of the different numerical algorithms are discussed.

This chapter was published in
Physics of the Earth and Planetary Interiors 171 (2008)
co–authored by Frehner M., Schmalholz S. M., Saenger E. H. and Steeb H.



COMPARISON OF FDM AND FEM 2.1. INTRODUCTION

2.1. Introduction

Propagation of seismic waves can be described analytically for some specific geometri-
cal setups (Love, 1944; Achenbach, 1973; Aki and Richards, 2002; Ben-Menahem and
Jit Singh, 1981). For more complex geometries, ray–tracing methods (Moser and Pa-
jchel, 1997; Cerveny, 2001) are able to approximate propagation of high–frequency seis-
mic waves when the wavelength is significantly smaller than the characteristic size of
heterogeneities. For seismic waves having a significantly larger wavelength than the char-
acteristic size of heterogeneities, effective medium theories can be used (Mavko et al.,
2003). However, if the wavelengths of the propagating waves and the characteristic size
of heterogeneities are of the same order, numerical methods are essential. Particular nu-
merical challenges are for example scattering phenomena in complex geometries (Korneev
and Johnson, 1996), wave attenuation due to wave–induced fluid flow (Carcione et al.,
2003; Masson and Pride, 2007), wave propagation in three–phase media (Carcione et al.,
2004; Santos et al., 2005) or microscale modeling of wave propagation in poroelastic rocks
(Saenger et al., 2007). Although on different scales, all these challenges comprise wave
scattering at heterogeneities.

For numerical modeling of seismic wave propagation different methods are available
(Kelly and Marfurt, 1990; Carcione et al., 2002; Cohen, 2002), which can have advantages
and disadvantages depending on the particular problem under study. Methods used in
this paper are the finite difference method (FDM) (Smith, 1985; Ames, 1992; Moczo et al.,
2007) and the finite element method (FEM) (Hughes, 1987; Bathe, 1996; Zienkiewicz and
Taylor, 2000). Both methods can be used to discretize spatial as well as time derivatives.
Different combinations of spatial and temporal discretization methods using FDM and
FEM are compared in this study. The different algorithms are described and applied to
a two–dimensional (2D) elastic scattering problem for comparison. Analytical solutions
for scattered wave fields are available for different cases (Ying and Truell, 1956; White,
1958; Liu et al., 2000; Sanchez-Sesma and Iturraran-Viveros, 2001). Liu et al. (2000)
provide an analytical solution to the particular 2D scattering problem considered in this
study. It is used as the reference solution for the comparison of the numerical results.

The main aim of this study is to compare results of numerical wave propagation simula-
tions based on different numerical algorithms and to discuss accuracy and computational
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COMPARISON OF FDM AND FEM 2.2. MODEL SETUP

performance of the different algorithms for a particular scattering problem. The investi-
gated 2D scattering problem consists of a mechanically weak circular inclusion embedded
in a stiffer elastic medium whereby a plane P–wave is scattered by the inclusion having
a diameter similar to the P–wave’s wavelength.
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Figure 2.1: Two representative snapshots of the wavefield to illustrate the numerical setup.
The particular method used to generate this figure is the spatial FEM with the implicit FDM in
time. Plotted is the normalized absolute value of the displacement field 1012

√
u2

x + u2
y. a) Early

snapshot of the simulation to show the model setup used for all simulations. A plane P–wave
travels from bottom to top of the model. Values for indicated physical parameters are given in
Table 2.1. Black dot to the right of the inclusion is a synthetic receiver used for further analysis
and has a distance to the center of the inclusion of five times the radius a. b) Snapshot after
0.201 s to show the wavefield under study. Values higher than 2 (maximal amplitude of incident
wave) are reduced to 2 and colored in black. Amplitudes inside circular inclusion are higher than
the gray scale indicates.

2.2. Model Setup

Figure 2.1a) displays a snapshot of a numerical wave propagation simulation showing the
2D model used in this study. The model consists of a mechanically weak circular inclusion
with radius a = 25 m embedded in a homogeneous elastic medium. A synthetic receiver
placed outside the inclusion records the particle displacement in both x– and y–directions.
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Boundary conditions are free surface at y = Ly (all stresses σ = 0), rigid boundary at
y = 0 (all displacements u = 0) and free slip at x = 0 and x = Lx (displacement in
x–direction ux = 0 and shear stress σxy = 0). All physical parameters are given in Table
2.1. The surrounding material represents an average sedimentary rock with the two Lamé
constants λ1 and µ1 equal to each other. The inclusion represents a hole filled with gas
that is approximated with a shear modulus µ2 = 0 and Lamé constant λ2 1000 times
smaller compared to the surrounding rock.

Instead of applying an external force (i.e. force term in the elastodynamic wave equation)
an initial perturbation in the particle velocity field in y–direction is prescribed at y =
Ly. The resulting plane P–wave is a Ricker wavelet with a dominant wavelength of λdom
= 157.1 m (dominant frequency fdom = 26.8 Hz). Figure 2.1b) shows a snapshot of the
resulting plane P–wave travelling from the bottom of the model towards the top, and
being scattered at the inclusion. Clearly visible is the direct plane P–wave that stays
relatively undisturbed behind the heterogeneity, and the primary scattered P–wave and
S–wave (P–to–S–converted) that are emitted in all directions from the circular inclusion.
In addition, a part of the wave is trapped inside the inclusion.

Parameter Value
Model size in x–direction Lx = 1000 m
Model size in y–direction Ly = 1000 m
Radius of inclusion a = 25 m
Density of surrounding media ρ1 = 2700 kg/m3

Density of inclusion ρ2 = ρ1/100
Lamé constant λ of surrounding media λ1 = 16 GPa
Lamé constant λ of inclusion λ2 = λ1/1000
Lamé constant µ of surrounding media µ1 = 16 GPa
Lamé constant µ of inclusion µ2 = 0 Pa
P–wave velocity of surrounding medium VP1 = 4216 m/s
P–wave velocity of inclusion VP2 = 770 m/s
S–wave velocity of surrounding medium VS1 = 2434 m/s
S–wave velocity of inclusion VS2 = 0 m/s

Table 2.1: Geometrical and physical properties used for the scattering modeling
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2.3. Methods

All numerical methods applied here discretize the linear elastodynamic wave equations
in 2D (Love, 1944; Lindsay, 1960; Achenbach, 1973) given by


ρ
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ρ
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∂t2
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∂
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(
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∂y

+
∂uy
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))
 . (2.1)

Variable ρ is density, t is time, x and y are the spatial coordinates and λ and µ are the
two Lamé constants, where µ is commonly referred to as the shear modulus. The applied
numerical algorithms are based on the FDM and the FEM but use different combinations
of the two methods for discretizing space and time derivatives. Three basically different
algorithms are applied:

1. Explicit FDM in time, FDM in space.
2. Explicit or implicit FDM in time, FEM in space.
3. FEM in time, FEM in space.

2.3.1. Explicit FDM in time and FDM in space

For the FDM in space Eqation 2.1 is split into five first–order differential equations using
the velocity–stress formulation. The numerical method commonly used to model wave
propagation is the FDM on a staggered grid (Virieux, 1986) using the explicit FDM for
time discretization. For this method the two components of the 2D velocity field are
defined at different discrete positions within the grid. Components of the stress tensor
are also defined at different positions. This implies that both density and shear modulus
have to be defined at more than one position in an elementary cell (Virieux, 1986). For
modeling high material contrasts special averaging methods of these parameters (Moczo
et al., 2002) are necessary to avoid numerical stability problems. Saenger et al. (2000)
proposed a modified staggered grid method, i.e. the rotated staggered grid (RSG), for
which all components of one physical property are defined at the same position in the

17



COMPARISON OF FDM AND FEM 2.3. METHODS

grid. No averaging of elastic moduli is necessary. Bohlen and Saenger (2006) presented
a stability and accuracy study and demonstrated that the RSG method is more accurate
compared to the standard staggered grid method.

The FDM used in this paper is equivalent to the RSG–FDM. Figure 2.2 shows the
elementary cell of the grid. Crosses indicate positions where spatial derivatives of the
five unknowns (vx, vy, σxx, σyy and σxy) are calculated. The spatial derivatives are
averaged to nodal points (for spatial derivatives of stress components) or to center points
(for spatial derivatives of velocity components), respectively, to multiply them with the
appropriate material parameter.

σxx, σyy, σxy
λ, μ

vx  vy
ρ

vx  vy
ρ

vx  vy
ρ

vx  vy
ρ

x

y

Figure 2.2: Elementary cell for the applied staggered grid FDM. All components of one physical
property are defined at the same position in the elementary cell. Spatial derivatives of all
unknowns are defined at positions marked with a cross and have to be arithmetically averaged
to nodal or center points.

Figure 2.3 sketches the discretization of properties in an inhomogeneous medium. Each
elementary cell belongs to one of the two media. In other words, the boundary between
different media is discretized along boundaries between elementary cells. According to
Krüger et al. (2005), elastic moduli are defined at the center of each elementary cell
and can only have the value of either of the two media. Therefore, no averaging of
elastic moduli is necessary. Density is defined at nodal points of the grid and has to
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be arithmetically averaged at nodal points where the four surrounding elementary cells
do not belong to the same medium (Krüger et al., 2005). This spatial discretization
method is not restricted to equally spaced grids but allows changes in spatial resolution,
e.g. higher resolution towards the inclusion. However, the grid is always rectangular,
which leads to a staircase–like discretization of the circular inclusion. First–order time
derivatives are discretized using the explicit FDM together with a staggered method in
time. The von Neumann stability criterion (Higham, 1996; Saenger et al., 2000) is used
to define the maximum time increment for stable solutions.

�����1 1,

�����2 2,
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Figure 2.3: Sketch of discretization of material properties with the applied staggered grid FDM.
Big red circle is the inclusion with different material properties than the surrounding medium.
Red shaded area represents the numerical discretization of the same inclusion. Discretization
runs along boundaries between elementary cells. Elastic moduli are defined on big dots (center
points) and density is defined on small dots (nodal points). Four elementary cells are blown up
to illustrate the arithmetic averaging of the density.

2.3.2. Implicit and explicit FDM in time and FEM in space

The FEM for spatial discretization used in this study (Hughes, 1987; Bathe, 1996;
Zienkiewicz and Taylor, 2000) employs 7–node isoparametric triangular elements with
biquadratic continuous interpolation functions (Zienkiewicz and Taylor, 2000). Numer-
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ical grids are generated by the software Triangle (Shewchuk, 1996, 2002) that produces
Delaunay–type meshes. Figure 2.4 sketches the spatial discretization of the circular
inclusion with an unstructured triangular grid. Such grids allow strong spatial reso-
lution changes over relatively short distances, e.g. higher resolution close to the in-
clusion boundary. Numerical implementation comprises the Galerkin weighted residual
method (Zienkiewicz and Taylor, 2000), lumped mass matrix (Bathe, 1996; Cohen, 2002)
and Gauss–Legendre quadrature with seven integration points (Zienkiewicz and Taylor,
2000). Compared to the FDM described above, material properties are defined for each
element and not on individual nodal points. Therefore, no interpolation and averaging
of these properties is necessary because the numerical mesh is generated in such a way
that boundaries between different media coincide with element boundaries.

440 460 480 500 520 540 560
440

460

480

500

520

540

560

Figure 2.4: Sketch of discretization of inhomogeneity using an unstructured triangular FEM–
mesh. Each triangle consists of seven nodal points on which the displacement is calculated.
Spatial resolution can increase towards the inclusion boundary that leads to a very accurate
discretization of the boundary without the need of a high resolution away from the boundary.

Different methods are available to discretize the second–order time derivative in Equation
2.1, both explicit and implicit, e.g. the leapfrog–method (Bathe, 1996), the Wilson cycle
(Zienkiewicz and Taylor, 2000) or the Newmark–algorithm (Newmark, 1959; Hughes,
1987). In this study a variation of the implicit Newmark algorithm is applied (Zienkiewicz
and Taylor, 2000). It uses a predictor–corrector scheme and calculates the displacement
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field u as the primary unknown, unlike the classical Newmark–algorithm that calculates
the acceleration a as the first unknown.

• Predictor:

aprediction
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• Solution:

ui+1 = −
(

1
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)−1 (

Maprediction
i+1

)
(2.3)

• Corrector:
ai+1 = aprediction

i+1 +
1

β∆t2
ui+1

vi+1 = vprediction
i+1 +

γ

β∆t
ui+1

(2.4)

In Equations 2.2 – 2.4 i is the index of any discrete time interval, ∆t is the time incre-
ment, u, v and a are the two–dimensional displacement, velocity and acceleration fields,
respectively, M is the lumped mass matrix and K is the stiffness matrix. For β and γ
the optimal values of 1/4 and 1/2 are chosen (Newmark, 1959; Bathe, 1996). For ex-
plicit time integration the classical Newmark algorithm (Newmark, 1959; Hughes, 1987)
is used. It is also a predictor–corrector method but calculates the acceleration field a as
the first unknown. To make this algorithm explicit β is set to zero.

2.3.3. FEM in both time and space

Applying the FEM in the temporal domain can be traced back to the seminal work of
Argyris and Scharpf (1969) and of Fried (1969). Here, a time–discontinuous Galerkin
method (DGT) is applied (Chen et al., 2006). The DGT method is based on classical
C0–continuous interpolation and test functions in the spatial domain, and discontinuous
interpolation and test functions in the temporal domain, respectively (Figure 2.5). The
actual elements used were 6–node triangular elements with biquadratic continuous in-
terpolation functions in space and linear discontinuous interpolation functions in time.

21



COMPARISON OF FDM AND FEM 2.3. METHODS

FEM–meshes are created by a Delaunay–type mesh generator (GIDCIMNE). Further-
more, the hybrid velocity integration (HVI) method is applied, which is based on a pure
velocity formulation of the governing first–order equations in time. According to the
applied discontinuous interpolation functions in the temporal domain, the inherent dis-
placement field can be calculated in a subsequent, i.e. post–processing step. Thus, a
classical solution technique based on the numerical investigation of a set of first–order
equations in time can be circumvented. Technical details and further numerical compar-
isons between classical FEM schemes and DGT or HVI techniques are explained by Chen
et al. (2008). According to the classical Bubnov–Galerkin scheme, interpolation and test
functions belong to the same function space leading to an algebraic system of equations
with symmetric matrices. In the present numerical scheme, the temporal inter–element
continuity is enforced by a special flux treatment technique (Chen et al., 2006). Thus,
stable and efficient numerical results with a low amount of numerical dispersion and
dissipation are obtained with rather large time steps.

v tx n
+

−( )
1
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tn+1

tn t
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−

+( )
1
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+
( )

v tx n
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vx

Figure 2.5: Discontinuous interpolation functions of the time–discontinuous Galerkin method
(DGT) in the time domain. At time tn two degrees of freedom for vx are necessary, one for the
time–element [tn−1 tn] and one for the time–element [tn tn+1].

2.3.4. Analytical solution

The analytical solution of the scattering problem displayed in Figure 2.1a) is described
by Liu et al. (2000). It provides the full seismogram at any synthetic receiver in the
model domain. Such a synthetic receiver is defined in terms of cylindrical coordinates
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r and θ for a coordinate system centred at the inclusion center. The solution in terms
of displacement potentials takes the following form for synthetic receivers outside the
inclusion:

ϕ (t, r, θ) =

+∞∫
−∞

G (ω)

(
+∞∑
m=0

AmH
(1)
m (kP r) cos (mθ)

)
e−iωtdω, (2.5)

ψ (t, r, θ) =

+∞∫
−∞

G (ω)

(
+∞∑
m=1

BmH
(1)
m (kSr) sin (mθ)

)
e−iωtdω. (2.6)

In Equations 2.5 and 2.6 ϕ and ψ are the displacement potentials of the P– and the S–
wave, respectively, G (ω) is the complex–valued frequency spectrum of the displacement
potential of the incident wave, ω is angular frequency, H(1)

m is the Hankel function of
the first kind of order m and kP and kS are the wave numbers of the P– and the S–
wave, respectively. The two rather complicated coefficients Am and Bm are given in
the Appendix of Liu et al. (2000) and are determined from the boundary condition at
the inclusion interface. To get the final solution the integrals from −∞ to +∞ and the
summations overm have to be calculated numerically. Both the number of summands and
the finite integration and summation boundaries are chosen in a way that the summation
converges to a constant value. From Equations 2.5 and 2.6 the displacement field of the
scattered wave can be separated into P– and S–wave fields (uP and uS), each separated
into x– and y–components (uix and uiy) using

uPx (t, x, y) =
∂ϕ (t, r, θ)

∂r
cos θ − 1

r

∂ϕ (t, r, θ)
∂θ

sin θ, (2.7)

uPy (t, x, y) =
∂ϕ (t, r, θ)

∂r
sin θ +

1
r

∂ϕ (t, r, θ)
∂θ

cos θ, (2.8)

uSx (t, x, y) =
1
r

∂ψ (t, r, θ)
∂θ

sin θ − ∂ψ (t, r, θ)
∂r

cos θ, (2.9)

uSy (t, x, y) =
1
r

∂ψ (t, r, θ)
∂θ

cos θ +
∂ψ (t, r, θ)

∂r
sin θ. (2.10)
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2.4. Results

In Figure 2.6 the synthetic seismograms at the receiver location indicated in Figure 2.1a)
are plotted as gray lines for all different numerical methods and for different spatial and
temporal resolutions. In Table 2.2 numerical parameters of all performed simulations
are given. The red lines in Figure 2.6 are calculated using the analytical solution of
Liu et al. (2000). In y–direction (Figure 2.6a) the first event recorded is the incident
plane P–wave. Later events are the scattered P–wave and the scattered S–wave (P–
to–S–converted) that are overlapping and, therefore, not distinguishable. In x–direction
(Figure 2.6b) the incident wave is not present and only the scattered wavefield is recorded.
The lowest–resolution numerical simulations differ significantly from the analytical so-
lution, especially towards the end of the seismogram. However, the majority of the
simulations fit the analytical solution very well. This applies for the shape of the seismo-
gram, amplitudes and arrival times. The seismograms in Figure 2.6 are used to calculate
the L2 error norm in both x– and y–directions,

L2x,y =

√√√√√√√√
nt∑
i=1

(
unum
x,y (ti)− uana

x,y (ti)
)2

nt∑
i=1

(
uana
x,y (ti)

)2 , (2.11)

where unum
i is the particle displacement obtained from a numerical simulation and uana

i is
the particle displacement obtained analytically. Figure 2.7 compares the L2 error norm
for displacements in x– and y–direction for the different numerical methods. The errors in
the two directions follow approximately a linear trend with increasing resolution whereas
the error for displacement in y–direction is consistently smaller than in x–direction.
This is already visible in Figure 2.6. For further analysis only the y–component of the
displacement (Figure 2.6a) is considered. Due to the linear trend of the errors in the two
directions (Figure 2.7), results of the error analysis for displacements in x–direction are
comparable.
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Figure 2.6: Synthetic seismograms (displacement–time–signal) at the receiver shown in Fig-
ure 2.1a). Gray lines show seismograms obtained from numerical simulations for all different
numerical methods. Red lines are the synthetic seismograms obtained analytically. a) Particle
displacement in y–direction and b) x–direction. Note the different scales in the two subfigures.
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Figure 2.7: L2 error norm for particle displacement in y–direction plotted versus L2 error
norm for particle displacement in x–direction. Different lines correspond to different numerical
methods and/or different implicit time increments. First abbreviations in the legend before the
comma (FDM or FEM) stands for the spatial discretization method, second abbreviation stands
for the time discretization whereas expl. refers to explicit time integration and impl. refers to
implicit time integration. Implicit time increments for both temporal FDM and temporal FEM
are: 1: ∆t = 2.37× 10−4 s; 2: ∆t = 1.19× 10−4 s; 3: ∆t = 2.69× 10−5 s.
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FDM in space and explicit FDM in time
# Nodes total 1’490’841 1’002’001 549’081 212’521 40’401
# Nodes incl. 10’108 15’380 7’860 1’976 80
∆t [10−5 s] 7.04 8.05 11.3 22.5 110

FEM in space and implicit FDM in time
# Nodes total 216’705 112’409 40’049 10’349
# Nodes incl. 21’392 5’516 826 210

FEM in space and explicit FDM in time
# Nodes total 216’705 112’409 40’049 10’349
# Nodes incl. 21’392 5’516 826 210
∆t [10−5 s] 0.64 1.43 5.38 13.8

FEM in space and implicit FEM in time
# Nodes total 287’725 128’369 72’821 33’405
# Nodes incl. 4’144 3’528 3’528 3’528
# Nodes total 13’249 9’089 7’005
# Nodes incl. 3’528 3’528 3’528

Table 2.2: Numerical parameters for all simulations performed in this study. # Nodes total is
the total number of numerical nodes in the domain, # Nodes incl. is the number of numerical
nodes that belong to the inclusion, ∆t is the time increment in 10−5 s. Explicit time increments
are calculated using the von Neumann stability criterion and are directly given in the table. Three
implicit time increments are chosen freely and not given in the table: 1: ∆t = 2.37× 10−4 s; 2:
∆t = 1.19× 10−4 s; 3: ∆t = 2.69× 10−5 s. Each geometrical setup that is solved implicitly is
solved with each of the three time increments.

In the following sections the accuracy of the different numerical methods is analyzed as a
function of spatial and temporal resolution (Table 2.2). For explicit methods spatial and
temporal resolutions are not independent from each other because the time increment is
calculated with the von Neumann stability criterion, which is a function of the spatial
resolution. Therefore, effects of spatial and temporal resolutions cannot be separated
completely for explicit methods.
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2.4.1. Effect of spatial resolution

With each numerical method a series of simulations with changing spatial resolution was
performed (Table 2.2). Figure 2.8 shows the L2 error norm for the particle displacement in
y–direction as a function of the number of degrees of freedom for the different methods.
Figure 2.8a) considers the total number of degrees of freedom in the whole numerical
domain and Figure 2.8b) considers only the degrees of freedom inside the inclusion. All
methods become more accurate with increasing spatial resolution. However, for the same
number of degrees of freedom (Figure 2.8a) the spatial FEM is more than one order of
magnitude more accurate than the spatial FDM. Also, the method using the FEM in
space and the implicit FDM in time clearly shows an effect of the chosen time increment.
Larger time increments give less accurate results and the difference in accuracy increases
with increasing spatial resolution. At the same time the method using the FEM in
both space and time does not show this effect and the lines for the two different time
increments lie virtually on top of each other.

The results change considerably when only the number of degrees of freedom inside the
heterogeneity (Figure 2.8b) is considered. Methods using the FEM in space are still
more accurate than the FDM in space but the difference is much smaller. This is largely
due to the fact that the numerical FEM–mesh can vary significantly while the spatial
variation of the FDM–mesh is limited. The method using the FEM in space and the
FDM in time makes use of this advantage. The spatial resolution is increased inside and
at the boundary of the inclusion while the resolution outside the inclusion is considerably
lower. The meshgenerator used by the method using the FEM in space and the FEM in
time keeps the resolution inside and at the boundary of the inclusion constant while the
resolution in the surrounding media is increased (Table 2.2). This leads to the almost
vertical line in Figure 2.8b).
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Figure 2.8: L2 error norm for particle displacement in y–direction plotted versus a) total number
of degrees of freedom in the numerical domain and b) number of degrees of freedom inside the
circular inclusion. The legend is valid for both subfigures and is explained in detail in Figure 2.7.
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Figure 2.9: L2 error norm for particle displacement in y–direction plotted versus number of
numerical nodes per dominant wavelength. To calculate the number of nodes per dominant
wavelength the shortest distance between two nodes in the whole numerical domain is used in
a). In b) the longest distance between two nodes in the whole numerical domain is used. The
legend is valid for both subfigures and is explained in detail in Figure 2.7.

Figure 2.9 is similar to Figure 2.8 but uses as a measure for spatial resolution the number
of numerical nodes per dominant wavelength (157.1 m). Because the spatial resolution
can vary within the numerical domain (for both the spatial FEM and the spatial FDM)
two measures are considered. Figure 2.9a) considers the minimal and Figure 2.9b) con-
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siders the maximal distance between two neighboring nodal points within the whole
numerical domain. The minimal distance between two nodal points (i.e. highest spa-
tial resolution) is on the boundary of the inclusion for all methods. Therefore, Figures
2.8b) and 2.9a) look very similar. However, the line representing the spatial FDM is
shifted even more to the left relative to the lines representing spatial FEM compared to
Figure 2.8a) and b). Again, this is an effect of the varying grid spacing of the spatial
FEM–mesh. Also the discrepancy between Figure 2.9a) and b) can be explained with
the unstructured FEM–mesh. While the grid spacing for the spatial FDM does not vary
significantly, the FEM–mesh can have larger spacing away from the inclusion. This shifts
all lines representing the spatial FEM to the left relative to the spatial FDM in Figure
2.9b) compared to Figure 2.9a).

2.4.2. Effect of temporal resolution

While for explicit schemes the time increment decreases with increasing spatial resolu-
tion according to the von Neumann stability criterion, no such criterion exists for implicit
schemes and the time increment can be chosen freely. To test the effect of temporal res-
olution implicit simulations were performed with three different time increments (Table
2.2). Figure 2.10 shows the L2 error norm for the particle displacement in y–direction
as a function of the time increment used in the simulations. Considering only the two
explicit schemes, Figure 2.10 resembles Figure 2.9a). The difference is a result of the two
slightly different stability criteria for the explicit time increments that were applied to
the spatial FDM and spatial FEM. The spatial FEM results in a smaller explicit time
increment because the numerical mesh can be locally very fine whereas the FDM–mesh
is more uniform. However, the two explicit schemes follow a common trend of increasing
accuracy with decreasing time increment.

For implicit schemes the different lines in Figure 2.10 represent simulations with the
same spatial resolution but different time increments. For low spatial resolution there is
no effect of the time increment. This means that the accuracy is limited by the spatial
resolution. Thus, the time increment of the coupled space–time FEM could be even
enlarged. However, for comparison reasons, this was not done in the present investigation,
but was studied in detail in Chen et al. (2008). For higher spatial resolution the method
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using the FEM in space and the FDM in time clearly shows higher accuracy for smaller
time increments. The accuracy for a given spatial resolution is limited by the applied time
increments. The same accuracy can be achieved by using either a smaller time increment
or a higher spatial resolution. At the same time the method using the FEM in both
space and time is unaffected by the changing time increment for all spatial resolutions.
The accuracy is limited by the spatial resolution.
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Figure 2.10: L2 error norm for particle displacement in y–direction plotted versus the applied
time increment. Abbreviations in the legend are explained in detail in Figure 2.7. For implicit
schemes the different lines represent the same spatial resolution but different time increments.

2.4.3. Effect of computation time

The two numerical algorithms using the FDM in time are implemented in MATLAB while
the algorithm using the FEM in time is implemented in C. Also, the different simulations
were not all performed on the same computer. Therefore, it is difficult to compare all the
simulations. However, Figure 2.11 shows the L2 error norm for the particle displacement
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in y–direction as a function of computation time per time increment (Figure 2.11a) and
as a function of total computation time (Figure 2.11b) for all performed simulations. For
increasing resolution (i.e. higher accuracy) implicit calculations in C perform faster than
in MATLAB.
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Figure 2.11: L2 error norm for particle displacement in y–direction plotted versus a) compu-
tation time (CPU time) per time increment and b) total computation time (CPU time) for the
whole simulation. The legend is valid for both subfigures and is explained in detail in Figure 2.7.

To achieve a given accuracy the method using the FEM in space and the explicit FDM in
time performs fastest. This is especially true when only one time increment is considered
(Figure 2.11a). Then the method using the FEM in space and the explicit FDM in time
performs more than an order of magnitude faster than all other methods for a given
accuracy. The unstructured FEM–mesh allows having a high spatial resolution at the
inclusion boundary without the need of a high resolution away from the inclusion. This
leads to accurate solutions with amuch smaller number of total grid points compared to
the spatial FDM and therefore also to faster performance. However, high resolution at the
inclusion boundary also results in a small explicit time increment (von Neumann stability
criterion) and therefore to a high number of time steps. Considering total computation
time (Figure 2.11b) the difference between the method using the FEM in space and
the explicit FDM in time and all other methods is therefore smaller. However, it still
performs a factor two (or more) faster than the other methods for a given accuracy.
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Considering only one time increment (Figure 2.11a) the implicit methods using the FEM
in space perform as fast as the method using the FDM in both space and time, al-
though this is an explicit method. The slower performance that is expected with implicit
methods is compensated by the fact that the unstructured FEM–mesh needs much less
numerical nodes for the same accuracy compared to spatial FDM (Figure 2.8a). Due to
the different numbers of time steps for the different methods the lines representing the
different methods in Figure 2.11b) are much further apart from each other compared to
Figure 2.11a).

2.5. Discussion

The spatial FEM generally gives better results compared to the spatial FDM for the
presented geometrical setup. The unstructured FEM–mesh allows a very accurate spatial
approximation of the circular inclusion, or any other heterogeneity, without introducing a
staircase–like material boundary. In addition, the unstructured FEM–mesh allows higher
spatial resolution where it is needed without the need of high spatial resolution in other
regions of the domain. This reduces the required number of grid points compared to
the rectangular FDM–meshes. A desired accuracy can also be achieved with the spatial
FDM, but a much higher number of numerical grid points is needed. This advantage of
the spatial FEM will be even more important in three–dimensional simulations where the
number of grid points increases more rapidly. Other methods, such as the finite volume
method, are also able to handle unstructured meshes and are expected to show similar
accuracies as the spatial FEM. Taking the aspect of computation time into account, the
best method shown in this study is the FEM in space and the explicit FDM in time. It
has both the advantage of the unstructured mesh and of the fast explicit time integration.
Simulations are both accurate and fast.

From a programming point of view the spatial FDM is the simplest numerical method
and is also commonly used for numerical wave propagation simulations. Therefore, it
is worth to evaluate the desired accuracy and calculation time for a particular problem.
For many applications the spatial FDM gives accurate enough results and/or the res-
olution can be set high enough to provide the desired accuracy. A further advantage
is that no third–party mesh generator is necessary for the spatial FDM. Therefore, the
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numerical mesh is under full control. The spatial FEM with the FDM in time is slightly
more complex to implement but leads to more accurate results. The space–time FEM
algorithm is more complex and is not a trivial extension of the spatial FEM with the
FDM in time. For discontinuous elements in time used here each spatial nodal point
requires twice as many degrees of freedom compared to the spatial FEM with the FDM
in time. Interpolation functions in time have to be independent of interpolation functions
in space and integration schemes have to be varied. The space–time FEM is compared
quantitatively and qualitatively with the spatial FEM combined with the FDM in time
by Chen et al. (2006, 2008). A big advantage is the fact that it is straightforward to
implement interpolation functions that are higher order in time (e.g. second or fourth
order) that result in a higher convergence rate. In the ideal case interpolation functions
in time adapt to the actual problem solved.

The analytical solution provided by Liu et al. (2000) is expressed as integrals and sums
(Equations 2.5 and 2.6) that need to be calculated numerically. This results in a relatively
lengthy numerical algorithm. It has to be made sure that the number of summands and
the finite boundaries for integration and summation are chosen in a way that the solution
converges. The seismogram (displacement–time–signal) for a synthetic receiver can be
calculated with reasonable computation time because the number of time increments
used is not too big. A snapshot as in Figure 2.1 for a high spatial resolution would
need a large computational effort. Also, the coefficients of the analytical solution are so
complicated and long that it is difficult to gain good physical insight in the scattering
process from the provided formulas.

Generally, the comparison between the different methods is not straightforward. In
explicit schemes spatial resolution and the time increment are tightly coupled through
the von Neumann stability criterion. Therefore, the effect of the two on the accuracy
of the numerical solution cannot easily be separated. The spatial FDM and the spatial
FEM use a completely different numerical mesh. Therefore, it is also difficult to compare
the spatial resolution of the two methods and several attributes describing the spatial
resolution have to be considered for comparison.
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2.6. Conclusions

The analytical solution for the simple scattering problem studied here is in fact expressed
as infinite integrals and sums. It is therefore not a pure analytical solution and a nu-
merical algorithm is required to calculate the values of the analytical solution. For more
geometrically complicated scattering problems numerical methods become essential.

The FDM and the FEM are two different numerical methods to spatially discretize the
geometry of the scattering problem. Both methods have advantages and disadvantages
but the main advantage of the FEM is the application of unstructured numerical meshes
while the FDM needs rectangular meshes. Therefore, the FEM provides the same numer-
ical accuracy as the FDM but requires significantly less numerical grid points. This is a
result of the unstructured mesh that allows high resolution where it is needed with lower
resolution elsewhere in the model domain. Also, the boundaries of heterogeneities can
be better resolved with unstructured meshes and the FEM does not require interpolation
of material properties which is required for the FDM using a velocity–stress formulation
on a staggered grid. On the other hand, an advantage of the FDM is the considerably
simpler numerical implementation.

The results show that the numerical accuracy does not improve by using implicit time
integration schemes (FDM or FEM) instead of explicit ones (FDM). Therefore, for the
presented geometrical setup of a circular inclusion inside a homogeneous medium, the
numerical algorithm consisting of the FEM in space combined with the explicit FDM in
time is the best choice which provides accurate results and performs fastest.
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3 Finite element simulations of Stoneley guided

wave reflection and scattering at the tips of

fluid–filled fractures

Abstract

The reflection and scattering of Stoneley guided waves at the tip of a crack filled with a
viscous fluid is studied numerically in two dimensions using the finite element method.
The rock surrounding the crack is fully elastic and the fluid filling the crack is elastic in
its bulk deformation behavior and viscous in its shear deformation behavior. The crack
geometry, especially the crack tip, is resolved in detail by the unstructured finite element
mesh. At the tip of the crack the Stoneley guided wave is reflected. The reflection coef-
ficient is calculated from numerical simulations, which provide values between 43 % and
close to 100 % depending on the type of fluid filling the crack (water, oil or hydrocarbon
gas), the crack geometry (elliptical or rectangular) and the presence of a small gas cap
at the crack tip. The interference of incident and reflected Stoneley guided waves leads
to nodes (zero amplitude) and anti–nodes. At anti–nodes the amplitude is increased.
However, the exponential decay away from the crack is equal to or even stronger than
that of an undisturbed Stoneley guided wave propagating along an infinite crack, which
makes the Stoneley guided wave difficult to detect at relatively short distances away
from the crack. The part of the Stoneley guided wave that is not reflected is scattered
at the crack tip and as P– and S–waves emitted into the surrounding elastic rock.
For fully saturated cracks the radiation pattern of these elastic body waves is almost
point–symmetric around the crack tip. The emitted elastic body waves may allow
detecting Stoneley guided wave–related resonant signals at distances away from the
crack where the amplitude of the Stoneley guided wave itself is too small to be detected.

This chapter is submitted to
Geophysics
co–authored by Frehner M. and Schmalholz S. M.



SGW REFLECTION AND SCATTERING 3.1. INTRODUCTION

3.1. Introduction

Fractures in rocks are of great practical interest not only because they contribute sig-
nificantly to the permeability of a rock (e.g. Faoro et al., 2009) but also because they
can have a significant influence on seismic waves that pass through fractured rocks. For
example, Saenger and Shapiro (2002) showed with numerical simulations that the wave
velocity of body waves decreases drastically with increasing crack density, Groenenboom
and Falk (2000) modeled numerically and measured in the laboratory that scattering
of body waves at hydraulic fractures is strong enough to determine the fracture dimen-
sions and Ionov (2007) showed that fractures intersecting a bore hole can have a major
impact in seismic surveys. One phenomenon of particular interest are Stoneley guided
waves (SGW), a highly dispersive and slowly propagating wave mode that is bound to
a crack (e.g. Ferrazzini and Aki, 1987; Ashour, 2000; Korneev, 2008). SGWs are also
referred to as crack waves (Chouet, 1986; Yamamoto and Kawakatsu, 2008), slow Stone-
ley waves (Ferrazzini and Aki, 1987) or simply Stoneley waves in a fracture (Ashour,
2000). They are of interest due to their ability to develop a resonance when propagat-
ing back and forth along a crack, which “should lead to strongly frequency dependent
propagation effects for seismic waves (Korneev, 2008)”. Despite their potential impor-
tance for wave propagation in porous and fractured rocks, SGWs are not considered in
existing effective medium and poroelastic theories, such as the Hudson–model (Hudson,
1980, 1981), the squirt flow model (Mavko and Jizba, 1991; Dvorkin et al., 1995) or the
Biot–model (Biot, 1962). Analytical studies of SGW propagation are available only for
infinite straight cracks (Ferrazzini and Aki, 1987; Ashour, 2000; Korneev, 2008) not tak-
ing into account the reflection and scattering at crack tips. Numerical studies are rare
(e.g. Chouet, 1986; Yamamoto and Kawakatsu, 2008) and only available for simple crack
geometries (usually rectangular). This paper extends this body of knowledge by studying
the propagation, reflection and scattering of SGWs at crack tips of different shapes and
with a high numerical resolution.

The resonance caused by SGWs propagating in finite fractures was used by Aki et al.
(1977), Chouet (1988) and Chouet (1996) to explain long–period volcanic tremor sig-
nals that are observed before volcanic eruptions and can potentially be used for eruption
forecasting. The reflection coefficient at the crack tip together with the attenuation

42



SGW REFLECTION AND SCATTERING 3.1. INTRODUCTION

determines how long a SGW survives propagating back and forth along a crack and
therefore how well it can develop a resonance. Knowing that SGWs can not be detected
a relatively short distance away from the crack due to the exponential decay of their am-
plitude (Ferrazzini and Aki, 1987), the way the tremor signal is transmitted to recording
stations at the Earth’s surface remained unclear. Ferrazzini and Aki (1987) suspected
that “reflection at the crack tip should provide an important source of radiation in the
case of a finite crack”. However, the reflection of SGWs at the tip of a crack has not been
investigated in detail, but is the main subject of this paper. The part of the SGW that
is not reflected is scattered at the crack tip and P– and S–waves are radiated away from
the crack tip. The radiation pattern of these P– and S–waves is of great importance for
measuring the resonant behavior of the SGW (i.e. the tremor signal).

The study of SGWs is a multiscale problem where typical wavelengths can be orders of
magnitudes larger than the characteristic size of the cracks. For numerical simulations
this “presents a major computational challenge (Korneev, 2008)”. The standard numerical
method for simulating wave propagation in fractured media is the finite difference method
(FDM) using a rectangular numerical grid (Chouet, 1986; Groenenboom and Falk, 2000;
Saenger and Shapiro, 2002; Krüger et al., 2005). The numerical method used in this study
is the finite element method (FEM) (e.g. Zienkiewicz and Taylor, 2000; Cohen, 2002)
that uses an unstructured numerical mesh. A similar method also using an unstructured
mesh is for example the discontinuous Galerkin method described by Käser and Dumbser
(2008). The unstructured mesh allows resolving geometrically complex objects with
strong material contrast (e.g. the tip of a crack) very finely and accurately without the
need of having a very high resolution elsewhere in the domain (Frehner et al., 2008).
In contrast, rectangular grids always approximate all objects in a staircase–like way,
which leads to numerical inaccuracies no matter how fine the numerical grid is. For
time integration in wave propagation simulations explicit schemes are most common.
The largest explicit time increment allowed for stable numerical solutions is determined
by the smallest spatial resolution and the largest wave velocity in the domain (Virieux,
1986; Higham, 1996; Saenger et al., 2000). Both parameters take extreme values when
SGWs are simulated. Spatial resolution needs to be very fine around the crack tip and
the dispersive P–waves in the viscous fluid have a velocity tending to infinity for very
large frequencies. Small–amplitude numerical noise, which is commonly characterized
by high frequencies, can build up and lead to numerical instabilities. One possibility
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to avoid these instabilities in viscous fluids is defining frequency dependent material
parameters (Saenger et al., 2005), which allows defining the high–frequency limit of the
dispersive waves from infinity down to a finite value. The alternative used in this study
is the use of an implicit time integration method (e.g. Chen et al., 2008; Frehner et al.,
2008), which does not require fulfilling any stability criterion. Material parameters in
the numerical algorithm can be implemented exactly the same way as they are written
in the constitutive equations and do not have to be made frequency dependent.

The paper starts with a description of the mathematical and geometrical model. Prop-
erties of the SGW as a function of the model setup and the different fluids used in this
study are described using analytical expressions of Ferrazzini and Aki (1987) and Korneev
(2008). A brief introduction to the applied 2D FEM is given before the numerical results
are shown. The reflection coefficient of a SGW at the tip of a crack is quantified as a
function of crack geometry and the type of fluid filling the crack. The radiation pattern
of P– and S–waves that are emitted into the surrounding rock is described in detail. The
paper ends with simulations for two advanced model setups (two intersecting fractures
and fractures filled with two different fluids) and a discussion about the applicability of
the modeling results to natural environments.

3.2. Model

The propagation of SGWs is studied with a 2D model with Cartesian coordinates x and
y. The mathematical description and the geometrical setup are described below.

3.2.1. Mathematical model

The force balance equation (or conservation of linear momentum) that describes the
state of the acting forces in 2D (Love, 1944; Lindsay, 1960; Achenbach, 1973; Shames
and Cozzarelli, 1997; Aki and Richards, 2002; Pujol, 2003) is given by
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ρ
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, (3.1)

where ρ is density and ¨̃u is the second time derivative of the displacement vector. The
symbol ˜ denotes the continuous nature of ¨̃u (not yet discretized with any numerical
method). Vector σ contains the three independent components σij of the symmetric
total stress tensor. Compressive stresses are defined as negative. Superscript T denotes
the transpose of a matrix. The deformation behavior of the medium is divided into a
bulk (or volumetric) part and a deviatoric (or shear) part. Therefore, the vector σ is also
divided into a bulk and a deviatoric part (Shames and Cozzarelli, 1997):


σxx

σyy

σxy
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−p
−p
0
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sxx

syy

sxy
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s

. (3.2)

Vector s contains the three independent components sij of the symmetric deviatoric stress
tensor and p is pressure (or mean stress). Vector ε, containing the three independent
components (two normal components εii and shear component γxy) of the symmetric
total strain tensor, is divided into a bulk and a deviatoric part in a very similar way:


εxx

εyy

γxy
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Θ
3
Θ
3

0

+


exx

eyy

gxy

︸ ︷︷ ︸
e

. (3.3)

Vector e contains the three independent components (two normal components eii and
shear component gxy) of the symmetric deviatoric strain tensor and Θ is the bulk strain
(εxx + εyy). Two different types of media are considered in this study, the rock (solid,
superscript s) and the fluid (superscript f) that fills the crack. The behavior of both
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media is the same as in Korneev (2008). The bulk deformation behavior of both media
is linear elastic, while the deviatoric deformation behavior of the two media is different.
The deviatoric deformation of the solid rock is linear elastic and that of the fluid is linear
viscous. The constitutive equation for the elastic bulk deformation of both media is

− p = Ks,fΘ, (3.4)

where Ks,f is the elastic bulk modulus of the solid and the fluid, respectively. The
constitutive equation for the deviatoric deformation of the elastic solid is


sxx

syy

sxy

 =

2µ 0 0
0 2µ 0
0 0 µ



exx

eyy

gxy

 , (3.5)

where µ is the elastic shear modulus. The constitutive equation for the viscous deviatoric
deformation of the fluid is


sxx

syy

sxy

 =

2η 0 0
0 2η 0
0 0 η



ėxx

ėyy

ėxy

︸ ︷︷ ︸
ė

, (3.6)

where η is the shear viscosity. Vector ė is the time derivative of vector e. The formulation
for total stress in the elastic solid is found by combining Equations 3.2, 3.3, 3.4 and 3.5
as


σxx

σyy

σxy
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K
s + 4

3µ Ks − 2
3µ 0
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3µ Ks + 4

3µ 0
0 0 µ




∂ũx
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 . (3.7)
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The formulation for total stress in the fluid is found by combining Equations 3.2, 3.3, 3.4
and 3.6 as


σxx
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σxy
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K
f Kf 0

Kf Kf 0
0 0 0




∂ũx
∂x
∂ũy
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∂y + ∂ ˙̃uy

∂x

 . (3.8)

Equation 3.7 describes the stress–strain relation of a fully elastic medium in 2D where
both the bulk and the shear deformation behavior are elastic. Therefore, P– and S–waves
can propagate in such a medium without velocity dispersion or attenuation. Equation
3.8 describes the stress–strain relation of a so–called visco–acoustic medium (a viscous
fluid) in 2D. Only the bulk deformation behavior is elastic while the shear deformation
behavior is viscous. Therefore, shear waves exist exclusively due to viscosity and have a
diffusive propagation type. On the other hand, P–waves can propagate in such a medium
but they are attenuated by the viscous damping terms. The formulation is very similar
to the one–dimensional formulation of a medium using a Kelvin–Voigt model (Bourbie
et al., 1987; Carcione, 2001). The P–wave phase velocity in the fluid V f

P is dispersive
with a low–frequency limit equal to VC =

√
Kf/ρf . For increasing frequency the phase

velocity increases continuously and goes to infinity without having a high–frequency
limit. The quality factor for P–waves in such a visco–acoustic fluid QfP is equal to infinity
(no attenuation) in the low–frequency limit and QfP = 0 (no propagation of waves) in
the high–frequency limit. Setting the shear viscosity η to 0 leads to a purely acoustic
formulation, also called an inviscid fluid. P–waves in an inviscid fluid propagate with the
velocity VC . They are neither dispersive nor attenuated. Equations 3.7 and 3.8 can be
written in a more general way:

σ = Delε + Dviscε̇, (3.9)

where, in the purely elastic case, Del is the matrix given in Equation 3.7 and Dvisc is
equal to 0. In the visco–acoustic case, Del is the first matrix given in Equation 3.8
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and Dvisc is the second matrix given in Equation 3.8. Equation 3.9 is substituted into
Equation 3.1 to yield the total equations of motion:

ρs,f ü = BTDelBũ+ BTDviscB ˙̃u. (3.10)

3.2.2. Geometrical model

For simulating SGWs and their behavior at a crack tip the three model setups shown
in Figure 3.1 are used. The first model (labeled 1, dashed lines) consists of a straight
horizontal crack of thickness h that runs through the whole model domain and is centered
at y = 0. This model does not contain a crack tip. The SGW propagates undisturbed
along the crack and can be compared with the analytical solutions for the phase velocity
(Ferrazzini and Aki, 1987; Korneev, 2008). The second model (labeled 2, solid line)
consists of half a crack that has an elliptical shape with a horizontal major axis 2L and a
vertical minor axis h. The tip of the crack is located at x = 0 and y = 0. The third model
(labeled 3, stippled line) consists of a straight horizontal crack of thickness h ending at a
flat crack tip (i.e. rectangular crack geometry). The tip of the crack is located at x = 0
and y = 0. In both the second and the third model the SGW propagates along the crack
and is partly reflected at the crack tip. In all three model setups, two vertical lines with
virtual receivers recording the displacement field are located at x/h = −70.0 (Line 1)
and x/h = −3.3 (Line 2), respectively. Because all model setups are symmetric around
y = 0, receivers are only positioned in positive y–direction.

In all three models, the boundaries are far enough away from the crack to avoid boundary
effects. Rigid wall boundary conditions (all displacements u = 0) are applied all around
the model except for the position where the crack is in contact with the left boundary.
There, only the displacement in y–direction is forced to vanish and the displacement in
x–direction is prescribed by the time and space dependent boundary condition,

F (t, y) = −A0
2 (t− t0)

τ2
exp

{
−(t− t0)2

τ2

}[
1−

(
2 |y|
h

)2
]

for− h

2
≤ y ≤ h

2
, (3.11)
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that acts as the external driving force. The time dependent part of F (t, y) is the first
derivative of a Gaussian, centered at time t0. The space dependent part of F (t, y) is a
hyperbola with maximum amplitude 1 at y = 0 and zero amplitude at y = ±h/2. The
applied parameters are A0 = 10−2, τ = 5 × 10−5 and t0 = 2 × 10−4. This leads to a
central frequency of the external force f0 = 4500 Hz.
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Figure 3.1: Sketches of the three model setups (labeled 1 – 3) used for 2D numerical simulations.
A crack filled with a fluid is surrounded by an elastic rock. Model 1 (dashed line): Straight
horizontal crack with constant thickness that runs through the whole model domain. Model 2
(solid line): Half a crack that has an elliptical shape and ends inside the model domain. Model
3 (stippled line): Rectangular crack with constant thickness that ends inside the model domain
at a flat crack tip. In all models two virtual vertical receiver lines are placed in positive y–
direction. Hatched walls represent the rigid wall boundary conditions that are applied all around
the model except for the position where the crack is in contact with the left boundary. There,
time dependent boundary conditions act as the external source.
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3.3. Model Properties

For the second and third model setups (Figure 3.1) the aspect ratio of the crack is
h/ (2L) = 333. While the elastic rock has the same properties throughout the entire
study different fluids are defined to fill the crack. Table 3.1 lists the material parameters
of the individual media and Table 3.2 lists the properties of the fluid–filled crack and of
the SGW. Properties for the elastic rock and for water, oil and hydrocarbon gas agree
with values of Ferrazzini and Aki (1987), Mavko et al. (2003) and Korneev (2008). The
two dimensionless parameters C (crack stiffness) and F (viscous damping loss) are defined
as in Chouet (1988):

C =
Kf

µ

2L
h
, (3.12)

F =
12η2L
ρfh2V s

P

. (3.13)

The applied material parameters lead to a ratio of λsP0/h = 170, where λsP0 is the
wavelength of a P–wave propagating in the elastic solid with the central frequency of
the external source. The phase velocity of the SGW is a function of the elastic and
visco–acoustic parameters of the rock and the fluid filling the crack, as well as the crack
thickness and frequency. Dispersion curves for both inviscid and viscous fluids (Ferrazzini
and Aki, 1987; Korneev, 2008, Figure 4 below) show a decrease of the phase velocity for
low frequencies. For zero frequency the phase velocity is zero. The high frequency limit
of the phase velocity of the SGW is that of a Scholte wave (Carcione and Helle, 2004)
that is the interface wave at a single fluid–solid interface.

Figure 3.2 shows the phase velocity and the quality factor of the SGW propagating
along a straight crack for a range of material parameters of the fluid together with the
parameters used in this study (Table 3.1) for constant material parameters of the solid
and for constant values of h and f0. Figure 3.2 is produced by using the analytical
solutions of Ferrazzini and Aki (1987) and of Korneev (2008) for inviscid and viscous
fluids, respectively. For material parameters of water, oil and hydrocarbon gas, the
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absolute phase velocity VSGW for inviscid fluids (Figure 3.2a) lies within a very narrow
range of 0.2 to 0.27 of the P–wave phase velocity in the elastic solid V s

P . However,
compared to the acoustic P–wave phase velocity in the inviscid fluid VC the phase velocity
of the SGW varies considerably for the different fluids (from 0.4VC for water to 0.98VC for
hydrocarbon gas). The fluid parameters Kf and ρf for water, oil and hydrocarbon gas lie
approximately on a straight line in double logarithmic representation (gray line in Figure
3.2a). This straight line is used as the abscissa in Figure 3.2b) and c) where the ordinate
is the normalized viscosity of the fluid. The viscosities of water, oil and hydrocarbon gas
are too small to have a significant effect on the phase velocity of the SGW compared to
the inviscid case (bottom of Figure 3.2b). At the same time, the quality factor of the
SGW (Figure 3.2c) is relatively large (more than 100) for the applied fluid viscosities
and only very little attenuation of the SGW is expected.

Medium Solid rock
(superscript s) Water Oil Gas

Bulk moduls K [GPa] 5 2.2 1.3 0.022
Ratio K/Ks 1 0.44 0.26 0.0044
Shear modulus µ 6 - - -
Shear viscosity η [Pa s] - 1× 10−3 1× 10−2 2× 10−5

Ratio η/ηWater - 1 10 0.02
Density ρ [kg/m3] 2500 1000 800 100
Ratio ρ/ρs 1 0.4 0.32 0.04
P–wave phase velocity VP [m/s] 2280.4 1483.2 1274.8 469.0
Ratio VP /V s

P 1 0.650 0.559 0.206
Low–frequency limit
of V f

P = VC [m/s] - 1483.2 1274.8 469.0

Ratio VC/V s
P - 0.650 0.559 0.206

Quality factor of P–wave
in viscous fluid QfP

- 5.8× 107 3.4× 106 2.9× 107

S–wave phase velocity VS [m/s] 1549.2 - - -
Ratio VS/V s

P 0.680 - - -

Table 3.1: Elastic and visco–acoustic material parameters for the different media used in this
study. Superscripts s and f denote properties of the elastic rock (solid) and of the fluid, respec-
tively. The dispersive P–wave phase velocity for viscous fluids V f

P and the corresponding quality
factor Qf

P is calculated for the central frequency of the external force. The low–frequency limit
of V f

P (called VC) is equal to V
f
P for an inviscid fluid. The P– and S–wave phase velocity for the

elastic rock is not dispersive.
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Figure 3.2: a) Contour lines of the SGW phase velocity VSGW for a range of acoustic material
parameters of the fluid and for zero viscosity (inviscid fluids). b) Contour lines of the SGW
phase velocity VSGW for a range of visco–acoustic parameters of the fluid. c) Contour lines of
the logarithm of the quality factor of the SGW QSGW for a range of visco–acoustic parameters
of the fluid. The abscissa of b) and c) is a linear relationship between log10

(
ρf
)
and log10

(
Kf
)

that approximately connects the material parameters ρf and Kf of water, oil and hydrocarbon
gas and is shown in a) as a gray line. In a) and b) VSGW is divided by the P–wave phase
velocity in the elastic rock V s

P and by the P–wave phase velocity in the visco–acoustic fluid V f
P

(VC for the inviscid case in a). Material parameters for the solid, the crack thickness h and
the central frequency of the waves f0 are constant in all subfigures. Material parameters of the
inviscid (acoustic) and visco–acoustic fluids used in this study (water, oil and hydrocarbon gas)
are indicated as full and open circles, respectively.
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Type of fluid Water Oil Gas
Crack stiffness
C =

(
2KfL

)
/ (µh)

122.2 72.2 1.22

Viscous damping loss
F = (23ηL) /

(
ρfh2V s

P

) 5.8× 10−4 71.1× 10−4 5.1× 10−4

Phase velocity of SGW
for viscous fluids VSGW [m/s] 586.2 608.7 459.8

Ratio VSGW /V s
P 0.257 0.267 0.202

Ratio VSGW /V
f
P

0.395 0.478 0.980
Phase velocity of SGW
for inviscid fluids V inviscid

SGW [m/s] 586.7 610.7 459.9

Ratio V inviscid
SGW /V s

P 0.257 0.268 0.202
Ratio V inviscid

SGW /VC 0.396 0.479 0.981
Quality factor of SGW QSGW 527.8 144.3 1189.2

Table 3.2: Properties of the crack and of the SGW for different fluids that fill the crack.
Superscripts s and f denote properties of the elastic rock (solid) and of the fluid, respectively. All
properties are calculated for the particular values for the crack geometry, the material properties
of the solid and the central frequency of the external force used in this study. The phase velocity
of the SGW is calculated using the solutions of Ferrazzini and Aki (1987) and Korneev (2008)
for inviscid and viscous fluids, respectively.

3.4. Numerical Method

The algorithm used for numerical simulations is an extended version of the algorithm pre-
sented and benchmarked in Frehner et al. (2008). It employs the finite element method
(FEM) (Hughes, 1987; Bathe, 1996; Zienkiewicz and Taylor, 2000) for discretization
of the spatial derivatives in Equation 3.10. The particular finite element used is a 7–
node isoparametric triangular element with biquadratic continuous interpolation func-
tions (Hughes, 1987; Bathe, 1996; Zienkiewicz and Taylor, 2000). The unstructured nu-
merical grid is generated by the software Triangle (Shewchuk, 1996, 2002). It is generated
in such a way that interfaces between different media coincide with element boundaries of
the finite element grid. Figure 3.3 shows three subfigures on different scales of the same
finite element grid that discretizes the model setup with the elliptical crack. The finite
element algorithm used comprises the Galerkin weighted residual method (Zienkiewicz
and Taylor, 2000), lumped mass matrix (Bathe, 1996; Cohen, 2002) and Gauss–Legendre
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quadrature on seven integration points (Zienkiewicz and Taylor, 2000). Equation 3.10,
discretized in space with the FEM takes the following form:

MLü + Cu̇ + Ku = 0, (3.14)

where ML, C and K are the lumped mass matrix, the damping matrix and the stiffness
matrix, respectively. The displacement vector u contains the unknown displacements ux
and uy at all discrete positions in the finite element grid. Note that the symbol ˜ has
been removed from u compared to Equation 3.10 because it is now discretized in space
(i.e. u contains only the values at numerical nodes). Time derivatives are discretized
with an implicit version of the Newmark algorithm (Zienkiewicz and Taylor, 2000). It is
a predictor–corrector algorithm based on a finite difference formulation.

• Predictor:

üprediction
j+1 = − 1

β∆t2
uj −

1
β∆t

u̇j −
1− 2β

2β
üj

u̇prediction
j+1 = − γ

β∆t
uj +

(
1− γ

β

)
u̇j +

(
1− γ

2β

)
∆tüj

(3.15)

• Solution:

uj+1 = −
(

1
β∆t2

ML +
γ

β∆t
C + K

)−1 (
Cu̇prediction

j+1 + MLü
prediction
j+1

)
(3.16)

• Corrector:
üj+1 = üprediction

j+1 +
1

β∆t2
uj+1

u̇j+1 = u̇prediction
j+1 +

γ

β∆t
uj+1

(3.17)

Subscript j is the index of any discrete time interval and ∆t is the time increment. For
the two Newmark parameters β and γ the optimal values of 1/4 and 1/2 are chosen
(Newmark, 1959; Bathe, 1996). Because the time integration method is implicit, no
stability criterion for the time increment has to be fulfilled and the time increment ∆t
can be chosen independently from the spatial resolution. This allows having a very fine
spatial resolution (Figure 3.3) without the need of a very small time increment. The time
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increment is chosen in such a way that a P–wave in the elastic rock travels the distance
2L in 2000 time steps.
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Figure 3.3: Three subfigures on different scales of the same numerical finite element grid dis-
cretizing the model with the elliptical crack (second model in Figure 3.1). Red elements have
material parameters of the visco–acoustic fluid. Black elements have material parameters of the
elastic rock. The spatial resolution of the grid varies strongly, being very fine inside and close to
the crack.

55



SGW REFLECTION AND SCATTERING 3.4. NUMERICAL METHOD

3.4.1. Benchmark of the numerical code

An earlier version of the numerical code was benchmarked in Frehner et al. (2008) for
a different geometrical setup comprising fully elastic and acoustic media but no visco–
acoustic media. Figure 3.4 shows the phase velocity dispersion curves of a SGW calcu-
lated for a straight crack and for the model parameters displayed in the figure. Analyti-
cal solutions are taken from Ferrazzini and Aki (1987) and Korneev (2008) for acoustic
(inviscid) and visco–acoustic fluids, respectively. Five numerical simulations were per-
formed with different central frequencies of the external source. The model consisting
of a straight crack (first model in Figure 3.1) is used for comparison with the analytical
solutions. The velocity of the SGW calculated from the time shift between measurements
at the two receiver lines (Figure 3.1) is plotted on top of the analytical solutions. These
numerically calculated velocities agree well with the analytic solutions.
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Figure 3.4: Phase velocity dispersion curve for a SGW propagating along a straight crack in
a system with the given model parameters. Ferrazzini and Aki (1987) provide an exact (their
equation 14b) and an approximate (their equation 16, also equation 1 in Korneev (2008)) solution
for an infinite crack filled with an inviscid (acoustic) fluid. Korneev (2008) provides a solution
for a crack filled with a visco–acoustic fluid (his equation 40). Numerical results are derived from
five simulations using the first model in Figure 3.1 with different central frequencies f0 in the
external source. The phase velocity of the SGW VSGW is normalized with the phase velocity of
a P–wave in the rock V s

P . The frequency f is normalized with V s
P /h.
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3.5. Numerical Results

In the following, results of the propagation, reflection and scattering of SGWs are pre-
sented that are derived from different numerical simulations.

3.5.1. Radiation of P– and S–waves from the crack tip

The SGW is bound to the crack and can not propagate further when the crack ends. It
must be (partly) reflected at the crack tip. Figure 3.5 shows the snapshots of a simulation
of a SGW propagating from left to right along an elliptical crack (second model in Figure
3.1) filled with viscous water. Panels a) and b) show the incident SGW, which is almost
unaffected by the presence of the crack tip. Because the crack thins towards the crack
tip due to its elliptical shape, the SGW slows down towards the crack tip. Therefore,
even though the SGW has not reached the crack tip yet, it is slightly deformed at its
front. The regular spacing of the logarithmically plotted contour lines demonstrates the
exponential decay of the amplitude away from the crack (Ferrazzini and Aki, 1987). The
amplitude decays more than one order of magnitude within one wavelength of the SGW.
Panels c) and d) show the SGW as it starts being reflected from the crack tip. Also,
a part of the wave energy is transferred to the surrounding elastic rock in the form of
P– and S–waves. The P–wave is visible in the upper panel while the S–wave is visible
in the lower panel. The difference in propagation distance between the P– and S–wave
due to the different wave velocities is clearly visible. In panels e) and f) the incident
and reflected wave trains of the SGW interfere destructively and the amplitude close to
the crack tip is relatively small. Also, a second pulse of P– and S–waves is radiated into
the surrounding elastic rock. The first S–wave pulse is still visible in the lower panel
but its amplitude decreased due to geometrical spreading. Panels g) and h) show the
final phase of the reflection process of the SGW. The SGW now propagates to the left
away from the crack tip. Interestingly, the P– and S–waves radiated away from the crack
tip form an almost point symmetric radiation pattern around the crack tip, which leads
to the interpretation that the crack tip acts like a point diffractor for the SGW. This
interpretation can be understood because the width of the crack and therefore the size
of the crack tip are orders of magnitudes smaller than the wavelength of the SGW. In
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all panels the interference of the incoming and reflected SGW trains leads to nodes (zero
amplitude) and anti–nodes (maximum amplitudes). One of the nodes is exactly at the
crack tip. Therefore, the reflection pattern of the SGW can be compared to a reflection of
a one–dimensional wave propagating in a medium with lower impedance at the interface
to a medium with higher impedance.
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Figure 3.5: Snapshots of the 2D displacement field of a simulation of a SGW propagating along
an elliptical crack (second model in Figure 3.1) filled with viscous water. Shown in black are con-
tour lines at the values 1× 10−8 m, 3× 10−8 m, 1× 10−7 m, 3× 10−7 m and 1× 10−6 m. Shown
in gray are contour lines at the values −1× 10−8 m, −3× 10−8 m, −1× 10−7 m, −3× 10−7 m
and −1× 10−6 m. Upper panels show the x–component of the displacement field ux. Lower
panels show the y–component of the displacement field uy. Panels from left to right represent
progressive points in time with the time indicated between the panels. Axis labels are only given
in the left and lower panels but are valid for all panels. The SGW is partially reflected at the
crack tip and elastic P– and S–waves are emitted from the crack tip into the surrounding rock.

Figure 3.6 shows snapshots of a simulation of a SGW propagating from left to right
along a straight crack with a flat crack tip (third model in Figure 3.1) filled with viscous
water. Unlike in Figure 3.5, the wave velocity of the SGW is constant due to the constant
thickness of the crack. Therefore, the individual snapshots in Figure 3.6 are not displayed
for the same points in time as in Figure 5 but it was tried to display the same stages of the
reflection process as in Figure 3.5 to make the figures comparable. The reflection pattern
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of the SGW at the flat crack tip is very similar to the one at the elliptical crack tip.
However, the nodes and anti–nodes along the crack are further apart because the SGW
does not slow down towards the crack tip. Similar to the elliptical crack tip the P– and
S–waves radiated away from the flat crack tip form an almost point symmetric radiation
pattern at the end of the reflection process. However, a major difference between the
two geometrical setups is the amplitudes of these P– and S–waves in the elastic solid,
the amplitudes being considerably higher for a flat crack tip.
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Figure 3.6: Same as Figure 3.5 but for a rectangular crack with a flat crack tip (third model
in Figure 3.1). Note that the time of the snapshots is not the same as in Figure 3.5 because the
SGW travels with a slightly different velocity.

3.5.2. Reflection of the SGW at the crack tip

As seen above, not all of the wave energy of the SGW is reflected at the crack tip but
a part is radiated into the surrounding rock in the form of P– and S–waves. Figure 3.7
displays the displacement–time signal at two receivers on receiver line 1 (Figure 3.1), one
inside and one outside the crack, for a simulation of a SGW being reflected at the tip of an
elliptical crack (second model in Figure 3.1) filled with viscous water. The incident and
reflected SGWs are well separated from each other in time. To quantify the reflected part
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of the SGW Figure 3.8 shows the reflection coefficient R for different model setups and
for different fluids filling the crack. Values of R are calculated from the displacement–
time signals at receivers on receiver line 1 (Figure 3.1), like the example shown in Figure
3.7. For each simulation two values for R are calculated, one at receivers inside the crack
in the visco–acoustic fluid and one for receivers outside the crack in the elastic rock.
Values labeled “oil with gas cap, elliptical crack tip” are discussed later. Values plotted
for material properties of water (values to the right of Figure 3.8) correspond to the two
simulations shown in Figure 3.5 and Figure 3.6.
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Figure 3.7: a) Displacement–time signal in x–direction at a receiver inside the crack on receiver
line 1 (Figure 3.1). b) Displacement–time signal in y–direction at a receiver outside the crack
on receiver line 1. Both traces are obtained from a simulation of a SGW propagating along
an elliptical crack (second model in Figure 3.1) filled with viscous water. Axis labels for the
time–axis are only given in the lower subfigure but are valid for both subfigures.

Around 77 % of the SGW is reflected at the elliptical crack tip and only around 43 %
is reflected at the flat crack tip. This is remarkable because the size of the crack tip is
orders of magnitude smaller than the wavelength of the SGW but still has a big impact.
The difference in the reflection coefficient also explains the amplitude difference of the
radiated P– and S–waves shown in Figure 3.5 and Figure 3.6. What is not reflected is
radiated into the surrounding rock. Therefore, a higher reflection coefficient (elliptical
crack) leads to smaller amplitudes of the radiated P– and S–waves. For different fluids
filling the elliptical crack the reflection coefficient is also different. Hydrocarbon gas leads
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to the highest reflection coefficient of almost 100 %. This also means that from a crack
filled with hydrocarbon gas only very small amplitude P– and S–waves are radiated when
the SGW is reflected at the crack tip. A SGW propagates both in the fluid that fills
the crack and in the rock surrounding the crack. It is therefore unclear how to calculate
the impedance for a SGW. However, the high reflection coefficient for a crack filled with
hydrocarbon gas can be qualitatively understood by considering the impedance of the
P–wave in the fluid (

√
Kfρf ), which is much smaller for hydrocarbon gas than for water

and oil. Therefore, the impedance contrast to the surrounding rock is much bigger, which
leads to a high reflection coefficient.
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Figure 3.8: Absolute value of the reflection coefficient |R| of a SGW that is reflected at the
tip of a crack. The abscissa is the same as in Figure 3.2b) and c). Rx is calculated from the
displacement–time signals in x–direction of eight receivers inside the crack on receiver line 1 at
position y/h = 0 − 0.35. Ry is calculated from the displacement–time signals in y–direction of
six receivers outside the crack on receiver line 1 at position y/h = 0.45 − 5.5. Values labeled
“viscous fluids, elliptical crack tip” are derived from simulations of an elliptical crack (second
model in Figure 3.1) fully saturated with the corresponding viscous fluid. Values labeled “flat
crack tip” are derived from a simulation of a rectangular crack with a flat crack tip (third model
in Figure 3.1) fully saturated with viscous water. Values labeled “oil with gas cap, elliptical crack
tip” are derived from a simulation of an elliptical crack (second model in Figure 3.1) partially
saturated with viscous oil and having a small gas cap at the crack tip. These values are plotted
at
(
KOil +KGas

)
/2. All values of |R| are corrected for the intrinsic attenuation due to viscous

damping in the fluids.
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Figure 3.9: Maximum absolute particle displacement along receiver lines 1 and 2 (Figure 3.1)
measured during the course of four different simulations. Three simulations consist of an elliptical
crack filled with three different viscous fluids. The fourth simulation consists of a rectangular
crack ending at a flat crack tip filled with viscous water. Maximum absolute particle displacement
along receiver line 1 is only shown for the elliptical crack filled with water (solid gray line) because
it is almost identical for all simulations. All values of one simulation are normalized with the
maximum absolute particle displacement at the crack interface at receiver line 1.

Due to the interference between incident and reflected SGWs the amplitudes add up
close to the crack tip. Figure 3.9 shows this effect and how the amplitude decays away
from the crack along receiver line 2 (Figure 3.1) for different model setups and different
fluids filling the crack. The amplitude distribution shows the same exponential decay as
discussed in Ferrazzini and Aki (1987). As a reference (solid gray line) the amplitude
decay along receiver line 1 for an elliptical crack filled with water is also given in Figure
3.9. For this case the wavelength of the SGW is around 40 times the crack thickness
h. At this distance away from the crack the amplitude decay is more than an order of
magnitude. The amplitude at the crack interface at receiver line 2 for a water and oil
filled crack is increased by about 30 %. Also the two different crack geometries (elliptical
and rectangular crack) that are filled with water do not influence this factor significantly.
The same amplitude for a crack filled with hydrocarbon gas is increased by about 120 %.
This is remarkable because for a reflection coefficient of 100 % (Figure 3.8) a maximal
increase in amplitude close to the crack tip of 100 % is expected. However, the wave
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velocity of the SGW also decreases towards the crack tip due to the elliptical shape of
the crack. This lets the amplitude of the SGW further increase, which adds up to the
maximal 100 % increase in amplitude due to the reflection process. For all cases shown
in Figure 3.9, even though the amplitude at the crack interface is increased, the decay
away from the crack happens within a relatively short distance. For cracks filled with
water or oil the amplitude along receiver line 2 is even smaller than along receiver line 1
for distances greater than 5 times the crack thickness.

3.5.3. Advanced model setups

The model setup consisting of an elliptical crack (second model in Figure 3.1) is used for
simulating a partially filled crack. The crack is filled with viscous oil and has a small cap
at the crack tip filled with hydrocarbon gas. The gas cap extends from x/h = −31.8 to
x/h = 0. Figure 3.10 shows the snapshots of the displacement field in x– and y–direction
after the SGW is reflected at the crack tip. A major part of the SGW is reflected already
at the oil–gas contact line and only a small–amplitude SGW propagates further along
the crack where it is reflected at the crack tip. This multiple reflection leads to the
complex reflection pattern in Figure 3.10. One major difference to the crack filled only
with oil (almost identical to crack filled only by water, Figure 3.5) is the amplitude and
radiation pattern of the P– and S–waves that are radiated away from the crack tip when
the SGW is reflected. The radiation pattern is much more forward directed towards
the propagation direction of the incident SGW, compared to an almost point–symmetric
radiation pattern for the fully saturated crack (Figure 3.5). Also, the amplitudes of the
radiated P– and S–waves are much larger. Figure 3.8 shows the reflection coefficient for
both cases. For the crack fully saturated with oil the reflection coefficient is about 78
%. It is reduced to about 43 % when the gas cap is present. The larger amplitudes of
the radiated P– and S–waves also mean that less of the energy of the SGW is reflected
compared to the fully saturated crack.
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Figure 3.10: Snapshots of the x– (a) and y–component (b) of the 2D displacement field of a
simulation of a SGW propagating along an elliptical crack (second model in Figure 3.1). The
crack is filled with viscous oil and has a small gas cap at the crack tip. Contour lines are the
same as in Figure 3.5. Axis labels for the ordinate are only given in the left subfigure but are
valid for both subfigures.

Individual isolated cracks are relatively unusual in nature. More common are swarms of
similarly oriented cracks or two or more families of cracks whose orientations intersect.
Figure 3.11 shows two snapshots at different points in time of a simulation of two in-
tersecting cracks. The first crack, in which the SGW is initiated, has an aspect ratio of
333. The second crack has an aspect ratio of 95. The first snapshot (Figure 3.11a) is
taken before the SGW reaches the intersection point of the two cracks. Two SGW trains
propagated away from the external source. The left wave train is already reflected at the
left crack tip and now both wave trains are propagating towards the intersection point
to the right. Also visible are the P– and S–waves that propagate in the surrounding rock
away from the external source and are scattered by the cracks. The second snapshot
(Figure 3.11b) is taken after the first SGW train passed the intersection point of the two
cracks. Only a part of the SGW continues propagating straight ahead on the first crack.
A part is reflected at the intersection point and interferes with the second SGW train
on the first crack. A considerable part of the SGW makes a sharp turn and propagates
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along the two branches of the second crack. Also, P– and S–waves are radiated away
from the intersection point into the surrounding rock.

Figure 3.11: Snapshots of the 2D displacement field at two different points in time (a and b) of a
simulation of a SGW propagating along an elliptical crack that is intersected by a second elliptical
crack. The displayed value is the normalized absolute particle displacement 106

√
u2

x + u2
y. The

cracks are filled with viscous water. Axis labels for the ordinate are only given in the left subfigure
but are valid for both subfigures.

3.6. Discussion

Models of SGWs propagating along fluid–filled cracks on various scales are used to explain
the occurrence of long period volcanic tremor (Aki et al., 1977; Chouet, 1988, 1996).
The magma chamber as a whole or hydro–fractures around the volcanic conduit may be
considered as the wave guide where a SGW propagates back and forth, which results in
a characteristic frequency. The way this long period signal is transmitted to recording
stations at the Earth’s surface remained unclear. The present study shows how P– and
S–waves are emitted into the surrounding rock when a SGW is reflected at the crack tip.
The emission of elastic body waves makes it possible to detect the presence of a SGW
even in distances away from the crack where the amplitude of the SGW itself is too
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small to be measured. The orientation of fully saturated cracks (or magma chambers)
might not be determinable from measurements of volcanic tremor due to the almost
point–symmetric radiation pattern, but it might be possible for cracks containing a gas
cap. Which model is more realistic in nature is still to be determined. The viscosity
of magma is considerably larger than that of the fluids in this study. Even though the
reflection coefficient of a SGW at the tip of a crack filled with magma may be high, the
SGW is expected to be attenuated relatively fast. This means that a single SGW can not
propagate back and forth the crack many times and produce a continuous long period
volcanic tremor. For this, a continuous excitation of SGWs would be necessary.

The presented numerical models deal with a multiscale wave propagation phenomenon.
Although highly resolved, the numerical setup is still rather simple, consisting of only one
single crack. One approach toward more realistic model setups was shown in the present
study by modeling two highly resolved intersecting cracks. Another approach is for
example a model of many cracks (Saenger and Shapiro, 2002; Saenger et al., 2004). The
primary investigation target of such models is to determine effective bulk rock properties.
However, the high spatial resolution that is needed for accurately modeling SGWs is
lacking in these models. For further insight into the significance of SGWs in a realistic
fractured rock both end member modeling approaches have to be brought together to
have a high–resolution model of a strongly fractured rock.

Using the FDM, it is not straightforward to discretize an elliptical crack with the rect-
angular numerical grid. Staircase–like discretization leads to numerical inaccuracies
(Frehner et al., 2008). A logical choice for the crack geometry is a straight crack with
a flat crack tip (Chouet, 1986; Groenenboom and Falk, 2000). Conversely, the FEM
can handle both crack geometries with ease because it uses an unstructured numerical
mesh. This difference is critical because the two different crack geometries have a major
influence on the reflection coefficient of SGWs and on the amplitude of the radiated P–
and S–waves. The sharp edges at the tip of the straight crack scatter SGWs much more
than the smooth elliptical crack tip. The question remains which crack geometry is more
realistic for natural cracks. Supposedly, a straight crack with flat crack tips is not the
most realistic model. Further investigations including rugose crack surfaces or cracks not
being straight can also be addressed simply with the FEM approach.
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3.7. Conclusions

The propagation of SGWs along a thin crack is a multiscale problem where the different
scales need to be resolved in detail. The FEM is a suitable numerical method for sim-
ulating such problems. The unstructured numerical grid allows having a fine resolution
where it is needed without the need of a fine resolution elsewhere in the numerical domain.
Also, the unstructured grid allows resolving complex geometries accurately without in-
troducing staircase–like discretization. The very fine spatial resolution would lead to a
very small explicit time increment and therefore to long calculation times. The implicit
time integration is a suitable alternative for the problem studied here.

SGWs propagate along cracks and are partly reflected at the crack tip. The interference
between incident and reflected SGWs leads to nodes (zero amplitude) and anti–nodes
(maximum amplitude) with one node exactly at the crack tip. A relatively short distance
away from the crack the SGW amplitude is too small to be detected due to the exponential
decay away from the crack. This is true even during the reflection process when the SGW
amplitude is increased at anti–nodes (Figure 3.9).

The reflection coefficient of the SGW at the crack tip depends on the fluid properties in
the crack and on the crack geometry (Figure 3.8). An elliptical crack having a round tip
exhibits a significantly higher reflection coefficient than a rectangular crack having sharp
corners at the tip. Elliptical fractures filled with gas, oil or water exhibit high reflection
coefficients between about 75 % and almost 100 % (Figure 3.8).

The part of the SGW that is not reflected at the crack tip is emitted into the surrounding
elastic rock in the form of P– and S–waves (Figure 3.5 and Figure 3.6). This makes the
detection of SGW–related signals possible even away from the crack where the SGW
itself can not be detected. The radiation pattern of these body waves is almost point–
symmetric around the crack tip for a fully saturated crack. In the presence of a small gas
cap at the crack tip the radiation pattern is predominantly directed in the propagation
direction of the incident SGW (Figure 3.10).
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4 Spectral modification of seismic waves

propagating through solids exhibiting a

resonance frequency: A 1D coupled wave

propagation–oscillation model

Abstract

A 1D model is presented that couples the microscale oscillations of non–wetting fluid
blobs in a partially saturated poroelastic medium with the macroscale wave propagation
through the elastic skeleton. The fluid oscillations are caused by surface tension forces
that act as the restoring forces driving the oscillations. The oscillations are described
mathematically with the equation for a linear oscillator and the wave propagation is de-
scribed with the 1D elastic wave equation. Coupling is done using Hamilton’s variational
principle for continuous systems. The resulting linear system of two partial differential
equations is solved numerically with explicit finite differences. Numerical simulations
are used to analyse the effect of solids exhibiting internal oscillations, and consequently
a resonance frequency, on seismic waves propagating through such media. The phase
velocity dispersion relation shows a higher phase velocity in the high–frequency limit
and a lower phase velocity in the low–frequency limit. At the resonance frequency a
singularity in the dispersion relation occurs. Seismic waves can initiate oscillations of
the fluid by transferring energy from solid to fluid at the resonance frequency. Due
to this transfer, the spectral amplitude of the solid particle velocity decreases at the
resonance frequency. After initiation, the oscillatory movement of the fluid continuously
transfers energy at the resonance frequency back to the solid. Therefore, the spectral
amplitude of the solid particle velocity is increased at the resonance frequency. Once
initiated, fluid oscillations decrease in amplitude with increasing time. Consequently, the
spectral peak of the solid particle velocity at the resonance frequency decreases with time.

This chapter was published in
Geophysical Journal International 176 (2009)
co–authored by Frehner M., Schmalholz S. M. and Podladchikov Y.
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4.1. Introduction

A number of processes can cause oscillations with a resonance frequency within a hetero-
geneous rock. For example, the behaviour of non–wetting fluids entrapped in capillary
tubes and in idealized pore spaces were studied (Dvorkin et al., 1990; Graham and Hig-
don, 2000a,b), and one of the main results is the oscillatory movement of the fluids when
an external force is applied (Hilpert et al., 2000). The restoring force driving the oscilla-
tions is the surface tension force or capillary force. The result that isolated oil blobs in
partially saturated rocks can exhibit a resonance frequency, motivated the suggestion of
a new enhanced oil recovery method (EOR) termed ’wave stimulation of oil’ or ’vibra-
tory mobilization’ (Beresnev and Johnson, 1994; Iassonov and Beresnev, 2003; Beresnev
et al., 2005; Li et al., 2005; Hilpert, 2007; Pride et al., 2008). Another example of solids
exhibiting internal oscillations is cavities or other heterogeneities in solids. These hetero-
geneities can oscillate and exhibit a resonance frequency (Meyer et al., 1958; Anderson
and Hampton, 1980a,b; Landau and Lifschitz, 1997). The process is also called resonant
scattering (Werby and Gaunaurd, 1989, 1990; Hassan and Nagy, 1997) and has appli-
cations in non–destructive testing of materials (Ida and Wang, 1996; Castellini et al.,
2000; Schultz et al., 2006). A third example of oscillatory behaviour is stratified media.
Urquizu and Correig (2004) showed that under certain circumstances a seismic wave
pulse propagating through a layered medium can be described mathematically with a
differential equation for an oscillator.

The oscillating effects caused by heterogeneities or layered media are implicitly included
in numerical models solving the full elastodynamic wave equations, as long as the hetero-
geneities or the layering are numerically well resolved (e.g. Frehner et al., 2008). How-
ever, the oscillatory behaviour of non–wetting fluid blobs in partially saturated rocks
(e.g. Hilpert et al., 2000) is not included in mathematical models of wave propagation
in partially saturated rocks. These models can be separated into two groups: 1) mod-
els based on Biot’s equations (Biot, 1962) for fully–saturated rocks, applying a spatial
variation of the pore fluid properties representing a partial saturation on the mesoscale
(i.e. larger than the pore size and smaller than the wavelength; White (1975); Dutta and
Ode (1979)), and 2) models for three–phase (i.e. solid, wetting and non–wetting fluid)
media considering a partial saturation on the pore scale, including particular capillary
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pressure versus saturation relations (Santos et al., 1990; Tuncay and Corapcioglu, 1996;
Smeulders and Van Dongen, 1997; Wei and Muraleetharan, 2002). In the derivation of
all of these continuum models for fully and partially saturated media, the individual
phases are usually mixed and their properties are averaged in a so–called representative
elementary volume. During this averaging the individual interfaces between the wetting
and non–wetting fluids in a pore disappear and the restoring force caused by the surface
tension is not included in the continuum models for wave propagation in partially satu-
rated rocks. Therefore, in these continuum models only the flow of the pore fluids caused
by fluid pressure differences (described most frequently by Darcy flow) is considered.
Additionally, numerical studies of microscale wave propagation in porous rocks (Saenger
et al., 2007) also do not include surface tension effects. However, they include microscale
scattering because they resolve the 3D pore geometry.

In this study a basic 1D model is presented that couples oscillations within a rock with the
seismic wave propagation through the rock. The model is not intended to be an extension
of the well–known Biot’s equations (Biot, 1962) to three phases (i.e. solid, wetting
and non–wetting fluid), but rather to study the fundamental energy transfer between
waves and oscillations and the resulting modification of the spectral content of elastic
waves while propagating through a solid exhibiting internal oscillations. Here, oscillations
caused by partial saturation of porous solids with a non–wetting fluid are considered.
The remaining pore space is assumed to be filled by a gas. Resonance frequencies of
such oscillations lie at the low–frequency end of the seismic spectrum (Hilpert, 2007;
Holzner et al., 2009). The motivation of this work is to couple the microscale pore
fluid oscillation models (assuming a rigid elastic skeleton) to the macroscale elastic wave
propagation model for the elastic skeleton. However, the model could be modified to
study other oscillatory processes.

The paper starts by deriving the coupled wave propagation–oscillation model. Next, the
resulting system of two coupled differential equations is solved numerically with explicit
finite differences. The dispersion relation and the energy balance of the coupled system
are studied numerically and analytically. Also, the spectral modification of elastic waves
propagating through solids exhibiting internal oscillations is analysed. A discussion on
the model’s applicability to hydrocarbon reservoirs is followed by conclusions.
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4.2. Mathematical Model

4.2.1. Elastic solid

The behaviour of the elastic solid in 1D is described by the total stress in the elastic solid
σs, the strain εs, being the spatial derivative of solid displacement us and the elastic
modulus K. The elastic stress–strain constitutive relationship with x as the spatial
coordinate is

σs = Kεs = K
∂us

∂x
, (4.1)

where K represents the bulk modulus of the poroelastic rock, which is saturated by two
immiscible fluids. The value of K is a function of the dry rock frame bulk modulus, the
grain bulk modulus, the bulk moduli of the two fluids and the porosity (Gassmann, 1951;
Berryman and Milton, 1991; Toms et al., 2006). There exists good understanding on the
value of K within the general theory of porous media (Borja, 2006; Gray and Schrefler,
2007), and values of K are, for example, applied in the theory of wave propagation in
partially saturated rocks (Santos et al., 1990; Tuncay and Corapcioglu, 1996). In the
low–frequency range, the Gassmann–Wood limit can be applied to estimate the value
of K (Mavko et al., 2003). Thereby, Wood’s law is used to calculate the effective fluid
bulk modulus from the bulk moduli of the two immiscible fluids and this effective fluid
bulk modulus is then used in the Gassmann relations (Gassmann, 1951) to estimate the
effective bulk modulus of the fluid–saturated rock.

4.2.2. Fluid movement as linear oscillations

In the following, oscillations caused by partial saturation of porous solids with a non–
wetting fluid are considered. The remaining pore space is assumed to be filled by a gas.
Beresnev (2006) showed that the movement of such non–wetting fluids can be described
with an oscillator equation. Here, a 1D harmonic oscillator equation with an angular
resonance frequency ω0 is assumed to represent this oscillatory behaviour:

76



COUPLED WAVE–OSCILLATOR MODEL 4.2. MATHEMATICAL MODEL

üf = −ω2
0

(
uf − us

)
. (4.2)

Superscripts f and s refer to the non–wetting fluid and the solid rock frame, respectively,
and u and ü are displacement and second time derivative of displacement. The restoring
force that leads to a oscillatory behaviour is the surface tension force or capillary force
(Dvorkin et al., 1990; Hilpert et al., 2000; Hilpert, 2007; Holzner et al., 2009). Both the
non–wetting pore fluid and the solid rock frame can be deformed, but only the relative
displacement leads to a restoring force. Therefore, the relative displacement is used on
the right–hand side of Equation 4.2. Hilpert et al. (2000) and Holzner et al. (2009)
derived analytical formulae for ω0 using different pore geometries and different boundary
conditions at the pore wall. Hilpert et al. (2000) used a fluid blob with pinned contact
lines in a pore with straight walls. The resulting formula is

ω0 =
√

4γ
r2hρf

sin θ0 (1 + sin θ0)2. (4.3)

Holzner et al. (2009) used a fluid blob with sliding contact lines in a bi–conically shaped
pore. The resulting formula is

ω0 =
√

6γ
rh2ρf

. (4.4)

In both formulae, the parameters γ , r, h and ρf are surface tension, radius of the pore,
length of the fluid blob and density of the fluid, respectively. θ0 in Equation 4.3 is the
contact angle between the non–wetting fluid surface and the rigid pore wall. The two
formulae have the same structure. Table 4.1 lists a set of parameters that is in accordance
with the parameters used by Hilpert et al. (2000) and Holzner et al. (2009). Using these
parameters, Equation 4.3 results in ω0 = 107.7 ( = 17.1 Hz × 2π) and Equation 4.4 in
ω0 = 75.1 ( = 12.0 Hz × 2π)), which is the same order of magnitude. The difference is a
result of the different pore geometries and boundary conditions at the pore walls of the
two cases. Considering n oscillators, the total kinetic energy of the fluid Efkin is
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Efkin =
1
2

n∑
j=1

mf
j

(
u̇fj

)2
. (4.5)

In Equation 4.5 mf
j and u̇fj are mass and time derivative of the displacement of each

individual oscillator. The pores are assumed to be non–connected. The individual oscil-
lations therefore do not interact with each other directly. However, the individual fluid
oscillations are coupled indirectly through their coupling to the solid (see below). Also,
the individual oscillations are assumed to exhibit the same resonance frequency ω0. These
two major assumptions lead to a simplified model where no fluid flow between pores can
take place. There will be no wave travelling due to the presence of the fluid, such as the
Biot slow wave. However, the resulting model allows studying first–order effects of the
oscillations on seismic wave propagation, which is included below. The total potential
energy of the pore fluid, Efpot, is the sum of the individual potential energies:

Efpot =
1
2

n∑
j=1

mf
jω

2
0

(
ufj − u

s
j

)2
. (4.6)

Parameter Symbol Value
Surface tension γ 0.02 N/m
Radius of pore r 0.001 m
Length of pore h 0.005 m
Density of fluid ρf 850 kg/m3

Contact angle θ0 20◦

Table 4.1: Parameters used to calculate the resonance frequency ω0 with Equations 4.3 and 4.4.
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4.2.3. Coupling between fluid oscillations and elastic waves

The coupling of the microscale (i.e. pore scale) fluid oscillations with a 1D linear elastic
solid yields the effective rheological model sketched in Figure 4.1. Two displacements
have to be considered individually in this model, the displacement of the solid phase us

and the displacement of the oscillating fluid phase uf . The solid is represented by a linear
elastic element and the fluid by an oscillating mass. The elastic wave propagation and
the fluid oscillations are coupled using Hamilton’s variational principle for continuous
systems (Fetter and Walecka, 1980; Bourbie et al., 1987). Therefore, the energies of the
oscillating fluid (Equations 4.5 and 4.6), which were defined in a discrete way, need to
be reformulated in the continuous limit. The different contributions to the total system
energy are then written in the following way:

K

us ufω0

Figure 4.1: Schematic rheological model for coupling between elastic deformation and fluid
oscillations. The elastic bar with bulk modulus K on the left–hand side is coupled in parallel
with a linear oscillator with a resonance frequency ω0.
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Efkin =
1
2

l∫
0

Sφρf
(
u̇f
)2
dx, (4.7)

Efpot =
1
2

l∫
0

Sφρfω2
0

(
uf − us

)2
dx, (4.8)

Eskin =
1
2

l∫
0

(1− φ) ρs (u̇s)2 dx, (4.9)

Espot =
1
2

l∫
0

σsεsdx. (4.10)

Parameters ρf , ρs and l are density of the fluid and the solid, respectively, and length
of the 1D model. Parameters φ and S are porosity of the rock matrix and saturation of
the pores by the non–wetting fluid, respectively. Both parameters are dimensionless and
have a value between 0 and 1. They are both assumed to be constant in time, that is,
porosity and saturation do not change when a wave is passing. Equations 4.7–4.10 only
consider the solid and the non–wetting fluid phase. In the presented cases, saturation
of the pores is smaller than 1 and a third phase is present. It is assumed that the third
phase is gaseous and that both its kinetic and potential energies are small compared to
the fluid and solid phases. Therefore, the third phase is neglected. Also, the gaseous
phase is assumed to have a much smaller bulk modulus than the fluid phase. Therefore,
the compression of the fluid can be neglected and the fluid bulk modulus is not considered
as a model parameter. Combining Equations 4.7–4.10, the Lagrangian functional L can
be formulated (Fetter and Walecka, 1980) using the total kinetic energy T and the total
potential energy U :

L = T − U =
(
Efkin + Eskin

)
−
(
Efpot + Espot

)
=

l∫
0

Ldx. (4.11)
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The Lagrangian density L has the dimension of energy per unit length. Hamilton’s
variational principle for continuous systems (Fetter and Walecka, 1980; Bourbie et al.,
1987) can now be applied to the Lagrangian functional:

δ

t2∫
t1

Ldt =

t2∫
t1

l∫
0

δLdxdt =

t2∫
t1

l∫
0

{
∂L
∂ui
− d

dt

(
∂L
∂u̇i

)
− d

dx

(
∂L
∂εi

)}
δuidxdt = 0. (4.12)

Superscript i in Equation 4.12 replaces superscripts s (solid) or f (fluid). The variations
δui are arbitrary (Fetter and Walecka, 1980). Therefore, their coefficients in curly brack-
ets must be equal to zero. The resulting equations are the Euler–Lagrange equations for
the continuous two–component system:

∂L
∂ui
− d

dt

(
∂L
∂u̇i

)
− d

dx

(
∂L
∂εi

)
= 0. (4.13)

The Lagrangian density L (in Equation 4.11) is substituted into the Euler–Lagrange
equations. The final equations of motions are

Sφρf üf = −Sφρfω2
0

(
uf − us

)
, (4.14)

(1− φ) ρsüs =
∂

∂x

(
K
∂us

∂x

)
+ Sφρfω2

0

(
uf − us

)
. (4.15)

Equations 4.14 and 4.15 form a closed system of two equations for the two unknown
functions us and uf . Equation 4.14 is identical to a linear 1D oscillator equation (Equa-
tion 4.2) but is formulated in terms of averaged density (Sφρf ). The left–hand side
together with the first term of the right–hand side of Equation 4.15 represents a 1D
wave equation (Lindsay, 1960; Achenbach, 1973; Szabo, 1985). It is also written in terms
of averaged density [(1− φ) ρs]. This 1D wave equation can represent a P–wave or an
S–wave, depending on the interpretation of the unknown solid displacement us and the
material parameter K. In this study, the solid displacement is assumed to be parallel
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to the propagation direction of the wave as well as parallel to the fluid displacement
uf . Therefore, in the following, the solid wave is called a P–wave. The additional term
on the right–hand side of Equation 4.15 links the fluid motion and the solid motion. If
Equations 4.14 and 4.15 are added the coupling term disappears and the equation of
conservation of the total linear momentum can be derived.

4.3. Numerical Model

Equation 4.1, the two Equations 4.14 and 4.15 and two additional kinematic equations
(∂ui/∂t = vi) represent a coupled system of five first–order linear partial differential
equations. The equations are spatially discretized over the model length l using the finite
difference method with a 1D staggered grid (Virieux, 1986). The two displacements and
the two velocities are defined on nodal points and the solid stress is defined on staggered
points (i.e. center points). Discretization in time is formulated explicitly with a staggered
method (Virieux, 1986). For some simulations the boundary conditions are rigid (all
displacements and velocities are equal to zero) and for some simulations, non–reflecting
(Ionescu and Igel, 2003). Figure 4.2 shows the model setup used in this study. Time
signals are recorded at two synthetic receiver locations R1 and R2. For some simulations
an external source is applied at the position S. In fact, the source is active over a small
number of spatial gridpoints whereas the source amplitude is highest at position S and
decays strongly over a few numerical points. The source acts as an additional force
term in Equation 4.15 and therefore acts only on the elastic solid. The fluid phase is only
affected indirectly through the coupling terms in Equations 4.14 and 4.15. The resonance
frequency of the pore fluid oscillations is set to 3 Hz throughout the model domain but,
using non–dimensionalization, the results can be translated to other frequencies. Physical
parameters used in the simulations are given in Table 4.2. For all simulations the spatial
resolution is chosen in such a way that the wavelength of a P–wave with a frequency of
50 Hz is resolved with 50 nodal points. The explicit time increment is calculated using
the von Neumann stability criterion (Virieux, 1986; Higham, 1996).
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Figure 4.2: 1D model setup for numerical simulations consists of two receivers R1 and R2 and
one source S. The whole domain is described by the coupled system of Equations 4.14 and 4.15.
The lower and upper boundaries can be rigid (zero displacement) or non–reflecting.

Parameter Symbol Value
Resonance frequency of oscillations ω0 18.85 (= 3 Hz ×2π)
Density of fluid ρf 800 kg/m3

Density of solid ρs 2800 kg/m3

Elastic bulk modulus K 1010 Pa
Porosity φ 0.3
Non–wetting fluid saturation of pores S 0.9
Frequency of external source Ω ω0/10
High–frequency limit of P–wave velocity V HF

P 2259 m/s
Low–frequency limit of P–wave velocity V LF

P 2132 m/s

Table 4.2: Parameters used in numerical simulations.
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4.4. Numerical Results

4.4.1. Energy conservation and transfer

To test for conservation of energy of the numerical scheme a homogeneous numerical
simulation was performed with two rigid boundaries (Figure 4.2). No source function
was applied, but a Gaussian–shaped initial perturbation of the solid velocity field was
prescribed. After the simulation started, this perturbation propagates through the solid
part of the model as an elastic wave and also initiates the fluid oscillations. In Figure
4.3 the four energies in the system (Equations 4.7 – 4.10), which are calculated from the
numerical simulation, are plotted versus time.
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Figure 4.3: Time evolution of the different energies in the coupled system (Equations 4.7–4.10).
A 120 m long homogeneous model with two rigid boundaries is used, and an initial perturbation
in the solid velocity field is applied. The total energy, that is, the sum of all energies (thick black
line) stays constant over time. Individual energy contributions are transferred between fluid (red
lines) and solid (green lines) phases.
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The energies of the solid and the fluid phase always add up to a constant total system
energy. The total energy of the system is conserved, which also illustrates the correctness
of the numerical algorithm. At time zero, following the initial conditions, energy of the
fluid is zero and energy of the solid is maximal. A significant part of the energy is then
transferred back and forth between solid and fluid phase, showing that the pore fluid
oscillations influence the behaviour of the solid phase considerably. For example, after
about 0.4 s, the solid has transferred about 45 % of its total energy to the fluid (Figure
4.3).

4.4.2. Eigenvalues and dispersion curve

In Figure 4.4 the phase velocity dispersion curve for a P–wave travelling in a medium
described by the coupled Equations 4.14 and 4.15 is plotted. The black line is the
analytical P–wave phase velocity as a function of frequency that is calculated from the
eigenvalues of Equations 4.14 and 4.15. For calculating the phase velocity numerically
(red dots in Figure 4.4), several simulations were performed using different frequencies
Ω in the external source function,

F (t) = sin (Ωt) . (4.16)

The source function was applied at position S of the model shown in Figure 4.2 with two
non–reflecting boundaries. The phase velocity of the P–wave was calculated from the
time–shift between the recordings at receivers R1 and R2. Numerical results agree well
with the analytically calculated phase velocity and the numerical simulations reproduce
well the phase velocity discontinuity around the resonance frequency.

The P–wave velocity in a dry poroelastic solid
√
K/[(1− φ) ρs] is the high–frequency

limit of the dispersion relation. At frequencies much larger than the resonance frequency,
inertia prohibits a movement of the pore fluid and the seismic waves travel as if there
was no pore fluid. At frequencies much smaller than the resonance frequency, solid and
fluid move in phase. In this regime, the effective density that has to be considered in cal-
culating the P–wave velocity is a combination of fluid and solid densities, and it becomes
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√
K/[(1− φ) ρs + Sφρf ]. This low–frequency limit is very similar to the low–frequency

limit of the Biot’s equations (Gassmann, 1951; Geerstma and Smit, 1961) but using a
constant bulk modulus. At frequencies just below the resonance frequency of the fluid
oscillations a decrease of phase velocity is observed, followed by a sharp velocity jump at
the resonance frequency to very high values. Mathematically, the phase velocity is indef-
inite at this point. With increasing frequencies the phase velocity decreases and finally
reaches the high–frequency limit. This characteristic P–wave velocity dispersion curve is
also observed in other media that exhibit an internal resonance behaviour. For example
Fox et al. (1955), Silberman (1957) and Anderson and Hampton (1980a) measured and
described a very similar dispersion relation in water containing gas bubbles. Although
the mechanism of oscillation is different, the effect on the propagation of seismic waves is
comparable. The model described by Equations 4.14 and 4.15 conserves energy (Figure
4.3). Therefore, P–waves are not attenuated. Attenuation can be calculated from the
eigenvalues of the system of Equations 4.14 and 4.15, but it results in zero attenuation
for all frequencies.
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Figure 4.4: P–wave phase velocity versus frequency. Frequency is normalized with the resonance
frequency of the fluid oscillations. Velocity is normalized with the phase velocity in a dry porous
rock. Analytical phase velocity is calculated from the eigenvalues of the system of Equations
4.14 and 4.15. Numerical phase velocities are calculated from simulations with a monochromatic
external source. Each point represents one individual simulation using one particular external
frequency.
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4.4.3. Spectrograms for wave incidence

A numerical simulation was run with the model setup shown in Figure 4.2 with two
non–reflecting boundaries. The external source applied at position S is a Gaussian curve
in time,

F (t) = exp

[
−(t− t0)2

2τ2

]
, (4.17)

where t0 = 10 s and τ = 0.01 s. The inlay in Figure 4.5a) shows the spectrum of this
source function. At receiver R2, both fluid and solid particle velocities were recorded.
Figure 4.5 shows the spectrograms for both particle velocities. The spectral values are
normalized with the spectrum of the external source. To calculate a spectrogram, a 10 s
time window is moved along the time axis of the recorded particle velocity–time signal
with 1 s steps. For each step, the spectrum is calculated and plotted at the center of
the 10 s window. Due to this algorithm, the pulse of the external source is visible in
the spectrogram between 5 and 15 s. Over this time interval, the spectrogram of the
solid particle velocity (Figure 4.5a) shows a minimum at the resonance frequency of the
fluid oscillations. The amplitude of this minimum is around one order of magnitude
smaller than the amplitude of the external source (orange colour of the minimum). The
second half of the spectrogram, where the external source is not present, shows a peak
at this frequency. Immediately after the source pulse has passed, this peak has the same
amplitude as the source at this frequency (dark red colour of the peak). The amplitude
of the peak decreases over time, becoming around one order of magnitude smaller after
25 s (orange colour). The spectrogram of the fluid velocity (Figure 4.5b) shows a peak
at the resonance frequency of the fluid oscillations throughout the whole simulation.
The amplitude of this peak is larger than the amplitude of the external source at this
frequency.
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Figure 4.5: Spectrogram of solid (a) and fluid (b) particle velocities at receiver R2 of the
model shown in Figure 4.2, with two non–reflecting boundaries. Inlay: Spectrum of the applied
Gaussian source function (Equation 4.17) applied at position S. Frequency is normalized with the
resonance frequency of the fluid oscillations. Spectral values are normalized with the spectrum
of the source function and are plotted logarithmically. Due to the algorithm calculating the
spectrograms (see text), the Gaussian peak of the external source is visible for 10 s (between 5
and 15 s).

Figure 4.5 indicates that at the moment of incidence of the elastic wave, fluid oscilla-
tions are immediately excited. The oscillations take place at the resonance frequency.
Therefore, a maximum at the resonance frequency develops in the spectrogram of the
fluid particle velocity from the very beginning of the simulation (Figure 4.5b). At the
same time, a minimum in the spectrogram of the solid particle velocity develops at this
frequency (Figure 4.5a). This happens because the energy for the initiation of the fluid
oscillations is taken from the solid. This energy transfer from solid to fluid takes place
only at the resonance frequency due to the linear nature of the system equations. After
the fluid oscillations are initiated and the elastic wave has passed, the fluid continues
to oscillate with its resonance frequency. Fluid oscillations in adjacent pores are almost
in phase because they are excited by the macroscale elastic wave at almost the same
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instant. Therefore, the effect of the different pores on the seismic wave adds up to a
measurable effect. The oscillating fluid continuously transfers energy back to the solid.
This energy transfer from fluid to solid happens only at the resonance frequency due to
the linear nature of the system equations. Therefore, a maximum in the spectrogram of
the solid particle velocity occurs at this frequency (Figure 4.5a). The amplitude of this
peak cannot be larger than the amplitude of the external source, which initialized the
oscillations. The non–reflecting boundaries of the system allow the P–waves to transport
energy out of the system. Therefore, the fluid oscillations decrease in amplitude and the
maxima in both spectrograms decrease.

4.4.4. Resonance curves

Figure 4.6 shows two resonance curves for the coupled Equations 4.14 and 4.15. The two
curves represent the solid and the fluid response at the frequency of the external source.
They are numerically calculated in the following way: a set of numerical simulations was
performed using a different frequency Ω in the monochromatic external source function
(Equation 4.16) for each of the simulations. The source function was applied at position S
of the model shown in Figure 4.2 with two non–reflecting boundaries. For each simulation
two mean spectra are calculated, one for the fluid particle velocity and one for the solid
particle velocity, both recorded for 300 s at receiver R2. Mean spectra are calculated by
arithmetically averaging in time the spectrograms that are calculated the same way as
described above for Figure 4.5. From these two mean spectra, the spectral values are
picked at the external frequency Ω. Each simulation (i.e. each external frequency) results
in two spectral values (i.e. solid and fluid response at the external frequency) that are
plotted in Figure 4.6. The frequency is normalized with the resonance frequency of the
fluid oscillations. Spectral values are normalized with the spectral values of the external
source function.

As expected for an oscillatory behaviour, the closer the external frequency is to the reso-
nance frequency the stronger the fluid response becomes. Below the resonance frequency,
the fluid response is equal to the solid response at very low external frequencies. Above
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the resonance frequency, the fluid response becomes much smaller than the solid response
with increasing frequency. The solid response is equal to the external source for all fre-
quencies except for a sharp minimum at the resonance frequency of the fluid oscillations.
The amplitude of this minimum is around one order of magnitude smaller than the am-
plitude of the external source. This is very similar to the minimum described in the first
half of Figure 4.5a). The observations in Figure 4.6 can be interpreted with the energy
transfer already described for Figures 4.3 and 4.5. The minimum in the solid response
develops because energy is transferred from solid to fluid only at the resonance frequency
to drive the fluid oscillations. At very low frequencies, the fluid moves in phase with the
solid. Consequently, the fluid response at very low external frequencies is equal to the
solid response. At very high external frequencies, inertia of the fluid prohibits excitation
of the oscillations and the fluid does not move. Consequently, the fluid response becomes
very small with increasing frequency.
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Figure 4.6: Spectral response of the fluid and solid particle velocity at the external source
frequency for different external frequencies. Velocities are recorded at receiver R2 of the model
shown in Figure 4.2, with two non–reflecting boundaries. One simulation with a monochromatic
source function (Equation 4.16) at position S provides the two data points at one frequency.
Frequency is normalized with the resonance frequency of the fluid oscillations. Spectral values
are normalized with the spectral values of the external source.
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Figure 4.7: Spectral response of the fluid and solid particle velocity at the resonance frequency
for different external frequencies. Velocities are recorded at receiver R2 of the model shown
in Figure 4.2 with two non–reflecting boundaries. One simulation with a monochromatic source
function (Equation 4.16) at position S provides the two data points at one frequency. Frequency is
normalized with the resonance frequency of the fluid oscillations. Spectral values are normalized
with the spectral values of the external source.

Figure 4.7 shows two resonance curves that are similar to the ones in Figure 4.6. The
two curves represent the solid and the fluid response at the resonance frequency of the
fluid oscillations. They are calculated in the same way as described above for Figure
4.6, but instead of picking the spectral values at the external frequency in the mean
spectra, the spectral values are picked at the resonance frequency. Normalization of the
frequency and of the spectral values is also done in the same way as in Figure 4.6. The
two data points at an external frequency equal to the resonance frequency are the same
data points as in Figure 4.6 at the same frequency. The two curves in Figure 4.7 have the
same shape but different amplitudes. They clearly represent the resonance effect of the
fluid. The closer the external frequency is to the resonance frequency, the stronger the
fluid response becomes. Because energy transfer between fluid and solid only takes place
at the resonance frequency, the solid response at the resonance frequency is dominated
by the oscillatory behaviour of the fluid. However, the fluid oscillations are also excited
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for other external frequencies than the resonance frequency, that is, spectra do not drop
to zero for external frequencies different from the resonance frequency. This is an effect
of the incidence of the elastic wave at the beginning of each simulation. At the moment
of elastic wave incidence, all frequencies are introduced into the system and the fluid
oscillations are excited. This excitation is stronger for elastic waves having a frequency
close to the resonance frequency.

4.4.5. Comparison to purely elastic case

From the set of numerical simulations used in Figures 4.6 and 4.7, one simulation is taken
for comparison with a purely elastic model. The chosen simulation uses a monochromatic
external source (Equation 4.16) applied at position S with a frequency Ω, 10 times smaller
than the resonance frequency. This choice is motivated by the fact that the Fourier
spectra of typical passive measurements of seismic background noise show a dominant
peak at around 0.2 Hz (Peterson, 1993; Berger et al., 2004), which is about a factor
10 smaller than the applied resonance frequency. This high–energy spectral peak is a
global feature that can be measured everywhere in the world and is presumably related to
seismic surface waves generated by ocean waves (Aki and Richards, 2002). After different
simulation durations, a Fourier spectrum is calculated from the solid particle velocity
recorded at receiver R2. The procedure to calculate a spectrum is not a moving–window
method with a constant time–window length but always uses the whole time signal from
the beginning of the simulation until the current time. It is therefore different from the
method used to produce Figures 4.5–4.7. For the same simulation duration, a model
is considered that has the same dimensions, the same source and receiver locations and
the same elastic properties as the numerical model but is purely elastic and does not
exhibit internal oscillations. Because this additional model is purely elastic, the particle
velocity–time signal at receiver R2 can be analytically calculated.
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Figure 4.8: Fourier spectra of solid particle velocity–time signal at receiver R2 of the model
shown in Figure 4.2 with two non–reflecting boundaries. A monochromatic source (Equation
4.16) is applied at position S with a frequency 10 times smaller than the resonance frequency of
the fluid oscillations. Different spectra are calculated after different simulation lengths. Longest
time signal is 120 s, shortest is 3.5 s. Frequency is normalized with the resonance frequency of
the fluid oscillations. Spectra are normalized with spectra of the analytically calculated solid
particle velocity–time signal at the same receiver but for a purely elastic model.

Figure 4.8 shows the division of the Fourier spectrum derived from the numerical simu-
lation (model exhibiting internal oscillations) by the Fourier spectrum derived from the
analytical time signal (purely elastic) for different simulation lengths. The frequency is
normalized with the resonance frequency of the fluid oscillations. The two spectra before
the division (not shown here) show a very distinct peak at the frequency of the external
source. This peak has a constant value after different simulation durations. Also, this
peak has the same value for both models (with internal oscillations and purely elastic)
and therefore cancels to a value of 1 when the two spectra are divided (Figure 4.8). Evo-
lution of the two spectra before the division (not shown here) shows that the spectral
amplitude of all other frequencies than the external frequency decreases with increasing
simulation duration. This decrease of spectral amplitudes is exactly the same for the two
cases (with internal oscillations and purely elastic). Therefore, the division of the two
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spectra lets them collapse onto one single curve (Figure 4.8), no matter what simulation
duration was considered.

The decrease of spectral amplitudes with increasing simulation duration before the spec-
tral division is interpreted in the following way. The particle velocity–time signal contains
the incidence of the elastic wave front as the first event. This event introduces all fre-
quencies when the Fourier spectrum is calculated. After that, the particle velocity–time
signal contains only the signal of the monochromatic source (in the purely elastic case)
and the signal of the oscillating fluid that is transferred to the solid. For a long simu-
lation, the monochromatic part of the time signal dominates and the first event, which
introduced all other frequencies, becomes less important in calculating the Fourier spec-
trum. Therefore, although the monochromatic part of the time signal stays constant,
the spectral amplitude of all other frequencies decreases with time. Figure 4.8 therefore
shows the time–independent spectral difference between the recorded particle velocity–
time signal at receiver R2 of the model exhibiting internal oscillations and the purely
elastic model. The strong peak at the resonance frequency is initiated at the very begin-
ning of the simulation when the wave front of the source signal propagates through the
medium and initiates the fluid oscillations. The time–constant peak in Figure 4.8 shows
that the amplitude at the resonance frequency decreases with the same rate as in the
purely elastic case and that no intrinsic attenuation due to the fluid oscillations takes
place.

4.5. Discussion

The oscillation behaviour of individual, partially saturated pores was studied thoroughly
theoretically (Graham and Higdon, 2000b), experimentally (Li et al., 2005) and numer-
ically (Hilpert, 2007; Pride et al., 2008; Holzner et al., 2009). However, the influence
of such oscillations on the propagation of seismic waves in the porous skeleton was not
studied in detail. Also, oscillatory behaviour of fluids and surface tension effects are not
included in poroelastic theories, such as Biot Theory (Biot, 1962), in patchy–saturation
models (White, 1975; White et al., 1975; Dutta and Ode, 1979), in 3–phase wave prop-
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agation models (Santos et al., 1990; Lo and Sposito, 2005), nor in microscale models
of porous flow (Saenger et al., 2007). For studying fundamental effects of the coupling
between fluid oscillations and seismic wave propagation, the presented model equations
(Equataions 4.14 and 4.15) are intentionally kept simple. Additional effects, for exam-
ple, damping of the oscillations, interaction between individual pores (i.e. connected
pores), attenuation of seismic waves, non–linear oscillations due to more complex pore
geometries or more spatial dimensions could be included to gain more insight into the
coupling effects. Despite the simplicity of the model, the dispersion relation (Figure 4.4)
agrees well with the dispersion relation for water containing gas bubbles (Fox et al., 1955;
Silberman, 1957; Anderson and Hampton, 1980a), which is a comparable problem of a
wave travelling through a medium exhibiting internal oscillations.

Because the system Equations 4.14 and 4.15 are linear, the energy transfer between solid
and fluid only happens at the resonance frequency of the oscillations (Figures 4.5a) and
4.6). Therefore, the source, which is only active in the solid in the presented cases,
needs to contain some energy at this frequency for the oscillations to be initiated. Even
using a monochromatic source (Equation 4.16), every point in the model experiences
a moment of seismic wave incidence because simulations are done in the time–domain.
The wavefield is therefore not stationary like in a frequency–domain simulation. At
the moment of seismic wave incidence all frequencies are introduced into the model,
despite the monochromatic source, and the oscillations are initiated. After the wave
front has passed, the fluid continues to oscillate and constantly transfers energy to the
elastic porous matrix. This results in a decrease of amplitude of the oscillations as long
as the oscillations stay undisturbed (Figure 4.5a). Seismic background noise in nature
(Aki and Richards, 2002; Peterson, 1993) contains the most energy at around 0.2 Hz but
also at larger frequencies with smaller amplitudes. Additionally, natural wavefields show
significant variations in amplitude. These amplitude variations can have similar effects
as individual incident wave pulses, which can potentially drive the fluid oscillations.

A possible application of the coupled wave propagation–oscillation model presented here
is passive low–frequency spectral analysis applied for detection of hydrocarbon reservoirs
(Dangel et al., 2003; Graf et al., 2007; Walker, 2008; Lambert et al., 2008; Holzner et al.,
2009). Passive low–frequency measurements show increased spectral amplitudes between
1 to 6 Hz when the ambient seismic background noise is measured above a hydrocarbon
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reservoir compared with measurements in areas without a reservoir. Several different
physical mechanisms are discussed as a potential cause of this phenomenon (Graf et al.,
2007), but no accepted physical theory has been published until now. Current models
suggest that reservoirs act like a filter or scatterer and modify the ambient seismic back-
ground noise. Fluid oscillations and surface tension effects could play an important role in
hydrocarbon reservoirs because of the coexistence of a wetting and a non–wetting phase
in the pores and other cavities, such as fractures. The presented model requires that
the ambient seismic background noise contains some energy at the resonance frequency
of the oscillations (presumably between 1 and 6 Hz) at reservoir depth. Bradley et al.
(1997) and Bonnefoy-Claudet et al. (2006) indicate that the spectral amplitude of the
ocean wave peak (0.2 Hz) stays very constant with depth but that spectral amplitudes
of higher frequencies drop relatively fast with depth. However, ambient seismic noise
still contains energy at these higher frequencies at reservoir depth. The presented model
also requires a partial saturation of the pore space. A hydrocarbon reservoir can be only
partially saturated or fully saturated. However, the effect in nature is expected to be
stronger close to the oil–water contact, close to the oil–gas contact or at the margin of a
reservoir, where the pores are partially saturated.

In natural environments, the resonance frequency of the fluid oscillations is not expected
to be constant for all pores due to complex pore geometries, different pore sizes, different
degree of connectivity or different degree of saturation. In addition, there can be other
effects causing oscillatory behaviour of a solid with a different resonance frequency, such
as multiple reflections in layered media (Urquizu and Correig, 2004) or resonant scat-
tering at heterogeneities (Werby and Gaunaurd, 1989, 1990; Hassan and Nagy, 1997).
Therefore, natural media should be represented by a range of resonance frequencies rather
than one particular value. The expected effects are smoother peaks and minima rather
than such strong and distinct peaks and minima shown in Figures 4.5 – 4.8.
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4.6. Conclusions

The impact of media exhibiting internal oscillations on elastic waves propagating through
such media is studied with a basic 1D model that couples microscale oscillations with
macroscale seismic waves. Oscillations are assumed to arise from non–wetting fluids
trapped in pores or other cavities in the solid rock matrix but can also arise from other
processes. The coupling of fluid oscillations with wave propagation models causes dis-
persion of the P–wave velocities around the resonance frequency (Figure 4.4). Numerical
simulations show that incident seismic waves initiate oscillations in the media. The en-
ergy required for the initiation of the oscillations is transferred from solid to fluid at
the resonance frequency. A seismic wave front therefore looses energy at the resonance
frequency and a minimum in the spectrum of the solid particle velocity develops. After
the wave front has passed, the fluid continues to oscillate with its resonance frequency
and energy is continuously transferred back from fluid to solid. Therefore, a peak devel-
ops in the spectrum of the solid particle velocity after the wave front has passed. The
continuous transfer of energy from fluid to solid after the wave front has passed leads
to a decrease of amplitude of the fluid oscillations. Consequently, the spectral peak at
the resonance frequency also decreases with increasing time (Figure 4.5). However, no
intrinsic attenuation takes place due to the fluid oscillations (Figure 4.8).

The results indicate that the frequency content of a wavefield can be modified by a
medium exhibiting a resonance frequency as long as the original wavefield contains energy
at the resonance frequency. Depending on the piece of the recorded particle velocity–time
signal used for calculating the Fourier spectrum the spectral amplitude at the resonance
frequency can be larger (i.e. a peak) or smaller (i.e. a minimum) than in the original
wave. No constant peak or constant minimum is expected.

The presented model is a basic one for studying fundamental effects. It includes the
impact of fluid oscillations on propagating waves that is not included in poroelastic the-
ories or in microscale models. Oscillatory effects might play an important role in natural
porous media that are partially saturated with a non–wetting fluid, such as hydrocarbon
reservoirs, or other media exhibiting a resonance frequency. Despite the simplicity of the
presented model, the dispersion relation agrees well with the one for water containing
gas bubbles, which is another example of a medium exhibiting a resonance frequency.
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5 Discussion

From the presented doctoral thesis a number of discussion points can be adressed, mainly
concerning two aspects:

• The physical interpretations of the presented phenomena in fluid–rock systems.
• The numerical challenges that are faced for simulating such systems.

These two aspects are covered separately in the following two sections.

5.1. Discussion concerning physics

In this thesis two wave propagation phenomena were investigated, the Stoneley guided
waves (SGW, Chapter 3) and the propagation of seismic waves through a medium ex-
hibiting internal oscillations (Chapter 4). Both phenomena occur in porous and fractured
rocks. Scattering used for the numerical accuracy study in Chapter 2 also occurs in the
same types of rocks. All of these phenomena are not considered in existing effective
medium or mixture models, such as the Biot theory (Biot, 1962), patchy–saturation
models (White, 1975; White et al., 1975; Dutta and Ode, 1979) or the Hudson model
(Hudson, 1980, 1981). However, these phenomena can be of importance in porous and
fractured rocks. For example, Saenger et al. (2007) presented two poroelastic wave propa-
gation simulations, one using Biot’s equations and one fully resolving the pore structures
in three dimensions and therefore also including scattering. The comparison showed that
scattering plays a significant role because it attenuates seismic waves. Also, Korneev
(2008) argues that incorporating SGW–related effects into poroelastic theories “might be
critically important for wave propagation effects in fractured reservoirs”. The effects de-
scribed in this thesis are difficult to generalize and incorporate into existing models using
effective parameters. However, when dealing with porous and fractured rocks, one has
to bear in mind that additional phenomena exist that are not included in the standard
theories but may have an important effect.
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The studied reflection coefficient of SGWs at the tip of a crack is strong enough (between
43 % and almost 100 %) that a SGW can propagate several times back and forth along
a finite crack. This leads to a resonant behavior of SGWs. The fundamental frequency
of such a resonance can be relatively low, for example between 46 Hz and 61 Hz for
the material parameters in Chapter 3 and a 10 m long fracture (but can be lower for
different material parameters and longer fractures). An object, at which seismic waves
are scattered, can also exhibit a resonance due to the periodicity of the circumferential
waves and the internal reflections (e.g. Hassan and Nagy, 1997; Liu et al., 2000, also
Appendix D). These types of resonant behavior may act as alternative arguments for the
coupled wave propagation–oscillation model presented in Chapter 4.

In Chapter 4 one particular resonance effect, i.e. oscillations on the pore–level due to
surface tension, was coupled with the wave–equation. The resulting medium exhibiting
internal oscillations temporarily modifies the frequency content of waves when they prop-
agate through this medium. This observation also applies to any medium that exhibits
an internal resonant behavior, e.g. a porous or fractured rock. However, this is only true
if the propagating wave already contains some energy at the resonance frequency of the
internal oscillations. As shown in Chapter 4 the wave looses energy at the resonance fre-
quency when the internal oscillations are initiated. Later, when the internal oscillations
continuously radiate P– and S–waves into the surrounding rock, the resonance frequency
can be measured away from the porous or fractured rock. How the radiation patterns of
P– and S–waves look like was shown in Chapter 3 for the case of SGWs that are scat-
tered at the tip of a crack. In real rocks a wide range of resonance frequencies is expected
because cracks have different lengths, are filled with different fluids and pore structures
are complex. This would lead to a continuous transfer of energy between the internal
oscillations and the wavefield. This thesis just presents the beginning of understanding
the complicated interplay between seismic wave propagation and fluids in a porous or
fractured rock that can exhibit a resonance frequency. More realistic models need to be
developed to better understand the importance of internal oscillations, such as resonant
SGWs, resonant scattering or resonance du to surface tension.
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5.2. Discussion concerning numerics

This thesis has shown that the finite element method (FEM) has great potential for
simulating wave propagation in heterogeneous media. As a non–standard technique it
is often wrongfully thought to be linked to an implicit time integration method and is
therefore put down as too computationally expensive for wave propagation simulations.
However, the FEM used in this thesis is exclusively used for spatial discretization and
does not influence the time integration. Both implicit and explicit time integration can
be used, which makes the FEM very flexible and well suitable for wave propagation
simulations. The FEM used for time–integration in parts of Chapter 2 is mathematically
separated from the space–FEM and only represents one possibility for an implicit time–
integration method.

Material contrasts lead to infinite values for the spatial derivatives of material parameters
in the governing equations, such as bulk or shear modulus (Equations 2.1, 3.10 and A.15).
The main difference between the FEM and the FDM used in this thesis is the approach
to remove the spatial derivatives from material parameters. The FDM introduces stress
as a new unknown that has to be determined with additional first–order equations (see
Appendix B for details). This leads to a reduction of the spatial derivatives in the
governing equations by one order. The resulting first–order equations are solved on
discrete points where the material parameters are defined. On the other hand, the FEM
uses an integral formulation of the governing equations (see Appendix C for details).
Integration by parts reduces the spatial derivatives by one order. The resulting integral
equations are solved element–wise. These two different formulations also lead to two
completely different numerical meshes. The FEM uses an unstructured triangular mesh
while the FDM uses a rectangular grid. Therefore, especially for heterogeneous media,
the FEM has some major advantages over the FDM. These are:

• An unstructured mesh is very flexible because it can resolve fine geometrical struc-
tures very accurately without the need of a fine resolution elsewhere in the model
domain. For example, the pore walls in a porous rock can be resolved with a
high resolution while the resolution inside the pores and the grains can be much
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coarser. This way, an unstructured mesh saves many unnecessary numerical points
compared to a rectangular grid.

• No matter how fine the FDM–grid is, it can not be avoided that objects are ap-
proximated in a staircase–like way because the grid is always rectangular. This
leads to numerical inaccuracies. On the other hand, the unstructured triangular
FEM–mesh can accurately follow any geometry.
• Strong material contrasts are handled by the FEM whithout problems while the

FDM can cause numerical inaccuracies at material boundaries. The first–order
spatial derivatives of the FDM–formulation have to be calculated across material
contrasts, which can cause numerical inaccuracies. The integral equations used for
the FEM are solved element–wise, which allows neighboring elements to have hugely
different material properties without introducing any numerical inaccuracies.

The first point will be even more important in three–dimensional simulations where the
number of numerical points increases more rapidly. For one–dimensional simulations
(e.g. Chapter 4) the listed advantages become less important and the FEM and the
FDM work equally well for wave propagation simulations. Using the FEM also has
some disadvantages compared to the FDM. However, they are considered as of minor
importance in this thesis. The disadvantages are:

• The implementation of the FEM is somewhat more difficult than that of the
FDM. For many applications the FDM is accurate enough (e.g. one–dimensional
problems or setups without strong material contrasts) and the effort of a FEM–
implementation is not worthwhile.
• The FEM always requires calculating the system matrices, no matter if an implicit

or explicit time–integration method is used. This is done only once before the
time–loop starts. However, it takes some calculation time. On the other hand, the
FDM hardly needs any calculations before the time–loop.
• The unstructured triangular mesh makes it more difficult for plotting results com-

pared to rectangular grids. Simple plotting routines in for example MATLAB do
not work for unstructured meshes. Also, plotting results along profile lines is not
straightforward. However, when the profile lines are known before the start of a
simulation, the software Triangle used for generating the FEM–meshes in this thesis
is flexible enough to incorporate them as a part of the unstructured mesh.
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One particular situation where an unstructured mesh is of no advantage is when measured
material distributions are used in wave propagation simulations. For example, digitized
microtomographic images of real porous rocks are used for creating velocity models for
seismic wave propagation simulations on the microscale (e.g. Saenger et al., 2004) or
interpreted seismic velocity cubes from three–dimensional seismic surveys are used for
the simulation of waves in the subsurface (e.g. Lambert et al., 2008; Steiner et al.,
2008). Such measurements of material property distributions are usually provided in
grid–like formats. It does not make sense to use unstructured numerical meshes in such
cases because the given data resolution can not be enhanced. However, the FEM can
still be advantageous over the FDM because, even though on a rectangular grid, strong
material contrast are approximated more precisely with the element–wise formulation of
the FEM.

Optimizing calculation time was not a major subject of this thesis. It is clear that all
numerical codes can be made faster by using for example another programming language
than MATLAB, faster implicit solvers or an optimized matrix–assembly algorithm (e.g.
Dabrowski et al., 2008). However, choosing between an implict and an explicit time–
integration method is of major importance when using the FEM and it depends on the
problem under study which one is better. The model setup with a thin fracture presented
in Chapter 3 requires a very high spatial resolution. Therefore, the explicit time incre-
ment, which is a function of the shortest distance between two numerical points, becomes
very small. Also, the model includes viscous fluids, which leads to dispersion problems
(see Chapter 3 for a discussion). In such situations an implicit time–integration method
is the best choice. However, the implicit time increment has to be choosen small enough
to obtain accurate results. In other situations, such as in Chapter 2 where no viscous
fluids are involved and the numerical resolution does not have to be extraordinarily high,
an explicit time–integration is the better choice and even makes the simulation faster.
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5.3. Broader implications

One example of heterogeneous and fractured rocks containing fluids is in volcanic areas
and below hydrothermal fields. Magma or hydrothermal water opening and migrating
along cracks can trigger microearthquakes and initiate the resonance effects in the rocks
discussed above. Resonant SGWs have drawn particular attention as a possible explana-
tion for low–frequency volcanic tremor (e.g. Aki et al., 1977; Chouet, 1988, 1996). The
narrow frequency band of the tremor–signal was quickly realized but a reasonable mech-
anism for its explanation has only been found when the resonant behavior of SGWs was
discovered. However, other oscillatory phenomena may play a role in volcanic tremor–
signals, such as resonant scattering of magma or fluid pockets or the resonance due to
surface tension effects between different fluids and gas bubbles.

Another example of fractured and porous media containing fluids is reservoir rocks for
hydrocarbons. The network of fractures and the porosity contributes significantly to the
permeability of a reservoir. In recent years, with increasing sensor sensitivity, similar
low–frequency signals to volcanic tremor have been observed above hydrocarbon reser-
voirs, often referred to as hydrocarbon microtremor (Dangel et al., 2003; Holzner et al.,
2005; Bloch and Akrawi, 2006; Suntsov et al., 2006; Graf et al., 2007; Walker, 2008;
Holzner et al., 2009). Steiner et al. (2008) used passive seismic surface measurements
of hydrocarbon microtremor and numerically back–propagated them into the subsurface
to detect potential source areas in the subsurface. Lambert et al. (2008) used similar
surface measurements to identify modifications of the wavefield in the frequency domain
above known hydrocarbon reservoirs. Saenger et al. (2009) presented an extensive hydro-
carbon microtremor survey over a gas field in Mexico where a good agreement between
interpreted surface attributes of the measurements and known gas intervalls was found.
However, all of these studies did not explain the mechanism causing hydrocarbon mi-
crotremor. They only assumed that the hydrocarbon reservoir modifies the wavefield in
the low–frequency range in a certain way that makes it detectable.

Quintal et al. (2009) showed that a porous partially saturated reservoir exhibits a strongly
frequency dependent reflectivity for elastic body waves because of attenuation within the
reservoir caused by wave–induced fluid flow between different saturation–domains. Such
a mechanism may cause the frequency dependent modification of the wavefield necessary
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to explain hydrocarbon microtremor. Resonance effects, such as oscillations on the pore–
level due to surface tension, resonant SGWs or resonant scattering may also explain the
harmonic nature of hydrocarbon microtremor. In any case, a final explanation for the
cause of hydrocarbon microtremor can not be given at this point and further research
into all mentioned potential mechanisms, and also others, has to be conducted.

Also in active seismic surveys (i.e. seismic survey with an active man–made source)
frequency dependent phenomena have been observed. For example Korneev et al. (2004)
desribed a frequency dependent reflection coefficient in the low–frequency range for a
seismic survey above a fluid–saturated reservoir. Effects described by Quintal et al.
(2009), resonance effects or both may play a role in such observed phenomena.
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6 Conclusions

In porous or fractured rocks a number of multiscale wave propagation phenomena can
occur, such as Stoneley guided waves, oscillations on the pore–level or scattering at
heterogeneities. They are multiscale because seismic wave lengths can be orders of mag-
nitude larger than heterogeneities, such as pores or fractures, or they can be of the same
order as heterogeneities, such as hydrocarbon reservoirs. Analytical solutions are lim-
ited to simple geometries and often require advanced numerical calculations to solve for
example analytical integral equations. Therefore, numerical simulations are a necessary
tool to gain insight into multiscale wave propagation phenomena in fluid–rock systems.

For numerical simulations two different approaches may be followed. 1) Effective medium
and mixture theories incorporate the effects of small scale processes approximatively into
wave propagation models with effective parameters. 2) Direct simulations resolve small
scale heterogeneities and directly model their effects. For direct numerical simulations of
multiscale problems the finite element method is a well suitable technique because it can
accurately resolve small scale heterogeneities with the unstructured numerical mesh.

The reflection of Stoneley guided waves at the tip of a crack is strong enough that a
Stoneley guided wave can propagate several times back and forth along a finite crack and
develop a resonance. The reflection coefficient depends on the fluid filling the crack and
on the crack geometry. The part of the Stoneley guided wave not reflected at the crack
tip is scattered and emitted into the surrounding rock as P– and S–waves. This emission
makes detecting the resonating Stoneley guided wave possible away from the crack.

Resonance effects in porous or fractured rocks, such as resonant Stoneley guided waves
or oscillations on the pore–level, introduce velocity dispersion and temporarily modify
the frequency content of seismic waves because energy is transferred between resonators
and seismic waves. One has to be aware that such effects are commonly not included in
continuum models using effective material parameters. More elaborate models need to
be investigated for understanding the importance of internal resonance effects in porous
or fractured rocks.
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Appendix A

Governing equations for two–dimensional elastic

and visco–acoustic deformation

For wave propagation phenomena discussed in Chapters 2 and 3 a purely linear elastic
surrounding medium in two dimensions is considered. The inclusion in Chapter 2 and
cracks in parts of Chapter 3 are filled with an inviscid gas or fluid with a shear modulus µ
equal to 0. Some cracks considered in Chapter 3 are filled with a viscous fluid. There, the
shear deformation is controlled by the shear viscosity η while the elastic shear modulus
µ is equal to 0. This appendix describes the governing equations of the materials used
in Chapters 2 and 3.

The symbols in this appendix may differ from the symbols used in Chapters 2 and 3,
especially the use of symbols ˜ and ˇ on top of some variables.

The equations presented in this appendix can be found in many textbooks, e.g. Love
(1944), Lindsay (1960), Achenbach (1973), Aki and Richards (2002), Shames and Coz-
zarelli (1997) or Pujol (2003). Not many further references are given in the following.

A.1. Stess and strain

The homogeneous two–dimensional state of deformation of a small volume of material is
described by the strain vector ε,

ε =


εxx

εyy

γxy

 =


∂ux
∂x
∂uy

∂y
∂ux
∂y + ∂uy

∂x

 . (A.1)
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The components εxx and εyy are the normal components of strain in x– and y–direction,
respectively, and γxy is the shear strain, also referred to as the engineering shear strain.
Displacements ux and uy are components in x– and y–direction of the total displacement
field, respectively. The strain vector ε can be decomposed into a bulk (i.e. volumetric)
part and a deviatoric (i.e. shear) part. The bulk part Θ is also called cubical dilatation
and is

Θ = εxx + εyy. (A.2)

The deviatoric part e is

e =


exx

eyy

gxy

 =


εxx − 1

3Θ
εyy − 1

3Θ
γxy

 . (A.3)

The homogeneous two–dimensional state of stress of a small volume of material is de-
scribed by the stress vector σ, which can also be decomposed into a bulk (i.e. volumetric)
part p and a deviatoric (i.e. shear) part s:


σxx

σyy

σxy

︸ ︷︷ ︸
σ

=


−p
−p
0

+


sxx

syy

sxy

︸ ︷︷ ︸
s

, (A.4)

where p is pressure. Compressive stresses are defined to be negative. Because compressive
pressure is defined to be positive, the minus sign in front of the pressure p becomes
necessary.
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A.2. Conservation equations

The fundamental mechanical conservation equations governing the two–dimensional de-
formation of a material are:

1. Conservation of linear momentum
2. Conservation of angular momentum
3. Conservation of mass

It can be shown that angular momentum is conserved when the stress tensor is symmetric.
In two dimensions this is written as

σxy = σyx. (A.5)

This is the well–known complementary property of shear. It is explained in in many
textbooks (e.g. Shames and Cozzarelli, 1997) and is not further discussed here. In
Equation A.4 symmetry of the stress tensor was already assumed. Conservation of linear
momentum in two dimensions takes the following form:

ρüx =
∂σxx
∂x

+
∂σxy
∂y

, (A.6)

ρüy =
∂σxy
∂x

+
∂σyy
∂y

, (A.7)

where ρ is the mass density of the material under consideration and üx and üy are the
second time derivatives of the displacement components in x– and y–direction, respec-
tively (i.e. acceleration). Hereby, the two dots denote the second time derivative (one
dot denotes the first time derivative). Note that in Equations A.6 and A.7 gravity is
ignored. Equations A.6 and A.7 represent two equations for the two unknowns ux and
uy. Conservation of mass of a compressible medium in two–dimensions is
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ρ =
ρ0

1 + Θ
≈ ρ0, (A.8)

where ρ0 is the mass density in the undeformed state of the material and ρ is the mass
density in a deformed state. The cubical dilatation Θ is assumed to be small compared
to unity in Equation A.8. Therefore, density ρ is constant over time. However, this does
not mean that the material is incompressible. The compressibility will have an effect in
the constitutive equations.

A.3. Constitutive equations

To be able to solve equations A.6 and A.7 a relation between the stress components and
the displacement components has to be defined, the so–called constitutive equations.
The constitutive equations describe the material behavior under loading and they are
separated into a bulk (i.e. volumetric) part and a deviatoric (i.e. shear) part. The
bulk deformation of all materials under consideration is linear elastic compressible and
is described as

− p = KΘ, (A.9)

The elastic material parameter K is the so–called bulk modulus. The deviatoric part of
deformation is defined differently for different materials. It is either elastic, i.e.


sxx

syy

sxy

 =

2µ 0 0
0 2µ 0
0 µ



exx

eyy

gxy

 , (A.10)

or viscous, i.e.
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sxx

syy

sxy

 =

2η 0 0
0 2η 0
0 η



ėxx

ėyy

ġxy

︸ ︷︷ ︸
ė

, (A.11)

where µ is the elastic shear modulus and η is the shear viscosity. The deviatoric strain
rate vector ė is the time derivative of the deviatoric strain vector e. Two total consti-
tutive equations can be derived. Combining Equations A.2, A.3, A.4, A.9 and A.10 the
total constitutive equation describing the behavior of a purely elastic material can be
derived:


σxx

σyy

σxy

 =

K + 4
3µ K − 2

3µ 0
K − 2

3µ K + 4
3µ 0

0 µ




∂ux
∂x
∂uy

∂y
∂ux
∂y + ∂uy

∂x

 . (A.12)

Combining Equations A.2, A.3, A.4, A.9 and A.11 the total constitutive equation de-
scribing the behavior of a visco–acoustic material can be derived:


σxx

σyy

σxy

 =

K K 0
K K 0
0 0




∂ux
∂x
∂uy

∂y
∂ux
∂y + ∂uy

∂x

+


4
3η −2

3η 0
−2

3η
4
3η 0

0 η




∂u̇x
∂x
∂u̇x
∂y

∂u̇x
∂y + ∂u̇x

∂x

 . (A.13)

Equation A.12 describes the behavior of an elastic solid. A viscous fluid (parts of Chapter
3) is described by Equation A.13 (visco–acoustic medium). Here, the elastic shear mod-
ulus is implicitly set to zero, but a shear viscosity is applied. An inviscid fluid (Chapter
2 and parts of 3) is also described by Equation A.13 but using a shear viscosity η equal
to zero (acoustic medium). Using the elastic constitutive matrix Del and the viscous
constitutive matrix Dvisc, Equations A.12 and A.13 can be expressed more generally
as
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σ = Delε + Dviscε̇. (A.14)

A.4. Total equations of motion

Substituting the constitutive equations (Equation A.14) into the equations of conser-
vation of linear momentum (Equations A.6 and A.7) leads to the final equations of
motion:

ρ

{
üx

üy

}
=

[
∂
∂x 0 ∂

∂y

0 ∂
∂y

∂
∂x

]
Del


∂
∂x 0
0 ∂

∂y
∂
∂y

∂
∂x

{ux
uy

}
+

[
∂
∂x 0 ∂

∂y

0 ∂
∂y

∂
∂x

]
Dvisc


∂
∂x 0
0 ∂

∂y
∂
∂y

∂
∂x

{u̇x
u̇y

}
.

(A.15)

Using

ũ =

{
ux

uy

}
, (A.16)

B̃ =


∂
∂x 0
0 ∂

∂y
∂
∂y

∂
∂x

 , (A.17)

Equation A.15 can be written in a simplified matrix notation, with supterscript T de-
noting the transpose of a matrix:

ρ¨̃u = B̃TDelB̃ũ + B̃TDviscB̃ ˙̃u. (A.18)
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Appendix B

Finite difference method

The finite difference method used for spatial discretization of the governing equations
in Chapter 2 is here explained in more details. Only fully elastic media and inviscid
fluids are modeled with the finite difference method. Therefore, only Equation A.12 is
considered here. A velocity–stress finite difference formulation is used. Equations A.6,
A.7 and A.12 are reformulated in the following way:

v̇x =
1
ρ

∂σxx
∂x

+
1
ρ

∂σxy
∂y

, (B.1)

v̇y =
1
ρ

∂σxy
∂x

+
1
ρ

∂σyy
∂y

, (B.2)

σ̇xx =
(
K +

4
3
µ

)
∂vx
∂x

+
(
K − 2

3
µ

)
∂vy
∂y

, (B.3)

σ̇yy =
(
K − 2

3
µ

)
∂vx
∂x

+
(
K +

4
3
µ

)
∂vy
∂y

, (B.4)

σ̇xy = µ

(
∂vx
∂y

+
∂vy
∂x

)
. (B.5)

Here, the components v stand for the first derivative of the displacement in Equations A.6
and A.7, i.e. the velocity. Equations B.1–B.5 represent five first order partial differential
equations for the five unknowns vx, vy, σxx, σyy and σxy. The spatial derivatives are
approximated with a finite difference quotient. The particular finite difference scheme is
equivalent, though not exactly the same, to the rotated staggered grid approach (Saenger
et al., 2000; Saenger and Bohlen, 2004; Krüger et al., 2005; Bohlen and Saenger, 2006).
Figure B.1 shows an example of a spatial indexing scheme with index i counting the nodal
points (dots in Figure B.1) in x–direction and index j counting the nodal points in y–
direction. A staggered grid approach is used with so–called center points (empty circles
in Figure B.1) at half–positions. Positions where the velocity and stress components
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are located are also indicated in Figure B.1. For getting the two equations for velocity
(Equations B.1 and B.2) at position (i, j), the following steps have to be performed.

1. Approximate the spatial derivatives in x–direction of the stress components σxx and
σxy at positions

(
i, j ± 1

2

)
(crosses in Figure B.1) using a finite difference quotient:

(
∂σxx
∂x

)
(i,j± 1

2)
≈ σ

(i+ 1
2
,j± 1

2)
xx − σ(i− 1

2
,j± 1

2)
xx

x(i+ 1
2
,j± 1

2) − x(i− 1
2
,j± 1

2)
(B.6)

(
∂σxy
∂x

)
(i,j± 1

2)
≈ σ

(i+ 1
2
,j± 1

2)
xy − σ(i− 1

2
,j± 1

2)
xy

x(i+ 1
2
,j± 1

2) − x(i− 1
2
,j± 1

2)
(B.7)

2. Interpolate spatial derivatives in x–direction of the stress components σxx and σxy
from positions

(
i, j ± 1

2

)
(crosses in Figure B.1) to position (i, j) (dot in Figure

B.1):

(
∂σxx
∂x

)
(i,j)

≈

 (
y(i,j) − y(i,j− 1

2)
) (

∂σxx
∂x

)
(i,j+ 1

2)
+
(
y(i,j+ 1

2) − y(i,j)

) (
∂σxx
∂x

)
(i,j− 1

2)


y(i,j+ 1

2) − y(i,j− 1
2)

(B.8)

(
∂σxy
∂x

)
(i,j)

≈


(
y(i,j) − y(i,j− 1

2)
)(

∂σxy

∂x

)
(i,j+ 1

2)
+
(
y(i,j+ 1

2) − y(i,j)

)(
∂σxy

∂x

)
(i,j− 1

2)


y(i,j+ 1

2) − y(i,j− 1
2)

(B.9)

3. Approximate the spatial derivatives in y–direction of the stress components σyy and
σxy at positions

(
i± 1

2 , j
)
(crosses in Figure B.1) using a finite difference quotient:

(
∂σyy
∂y

)
(i± 1

2
,j)
≈ σ

(i± 1
2
,j+ 1

2)
yy − σ(i± 1

2
,j− 1

2)
yy

y(i± 1
2
,j+ 1

2) − y(i± 1
2
,j− 1

2)
(B.10)

(
∂σxy
∂y

)
(i± 1

2
,j)
≈ σ

(i± 1
2
,j+ 1

2)
xy − σ(i± 1

2
,j− 1

2)
xy

y(i± 1
2
,j+ 1

2) − y(i± 1
2
,j− 1

2)
(B.11)
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4. Interpolate spatial derivatives in y–direction of the stress components σyy and σxy
from positions

(
i± 1

2 , j
)
(crosses in Figure B.1) to position (i, j) (dot in Figure

B.1):

(
∂σyy
∂y

)
(i,j)

≈


(
x(i,j) − x(i− 1

2
,j)
)(

∂σyy

∂y

)
(i+ 1

2
,j)

+
(
x(i+ 1

2
,j) − x(i,j)

)(
∂σyy

∂y

)
(i− 1

2
,j)


x(i+ 1

2
,j) − x(i− 1

2
,j)

(B.12)

(
∂σxy
∂y

)
(i,j)

≈


(
x(i,j) − x(i− 1

2
,j)
)(

∂σxy

∂y

)
(i+ 1

2
,j)

+
(
x(i+ 1

2
,j) − x(i,j)

)(
∂σxy

∂y

)
(i− 1

2
,j)


x(i+ 1

2
,j) − x(i− 1

2
,j)

(B.13)

5. Multiply the spatial derivatives of the stress components with 1
ρ that is defined at

position (i, j):

v̇(i,j)
x =

1
ρ(i,j)

(
∂σxx
∂x

)
(i,j)

+
1

ρ(i,j)

(
∂σxy
∂y

)
(i,j)

(B.14)

v̇(i,j)
y =

1
ρ(i,j)

(
∂σxy
∂x

)
(i,j)

+
1

ρ(i,j)

(
∂σyy
∂y

)
(i,j)

(B.15)

For getting the three equations for stess (Equations B.3–B.5) at the center position(
i− 1

2 , j −
1
2

)
, a similar procedure has to be performed.

1. Approximate the spatial derivatives in x–direction of the velocity components vx
and vy at positions

(
i− 1

2 , j −
1
2 ±

1
2

)
(crosses in Figure B.1) using a finite difference

quotient:

(
∂vx
∂x

)
(i− 1

2
,j− 1

2
± 1

2)
≈ v

(i,j− 1
2
± 1

2)
x − v(i−1,j− 1

2
± 1

2)
x

x(i,j− 1
2
± 1

2) − x(i−1,j− 1
2
± 1

2)
(B.16)

(
∂vy
∂x

)
(i− 1

2
,j− 1

2
± 1

2)
≈ v

(i,j− 1
2
± 1

2)
y − v(i−1,j− 1

2
± 1

2)
y

x(i,j− 1
2
± 1

2) − x(i−1,j− 1
2
± 1

2)
(B.17)
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2. Interpolate spatial derivatives in x–direction of the velocity components vx and vy
from positions

(
i− 1

2 , j −
1
2 ±

1
2

)
(crosses in Figure B.1) to position

(
i− 1

2 , j −
1
2

)
(empty circle in Figure B.1):

(
∂vx
∂x

)
(i− 1

2
,j− 1

2)
≈

 (
y(i− 1

2
,j− 1

2) − y(i− 1
2
,j−1)

) (
∂vx
∂x

)
(i− 1

2
,j)

+
(
y(i− 1

2
,j) − y(i− 1

2
,j− 1

2)
) (

∂vx
∂x

)
(i− 1

2
,j−1)


y(i− 1

2
,j) − y(i− 1

2
,j−1)

(B.18)

(
∂vy
∂x

)
(i− 1

2
,j− 1

2)
≈


(
y(i− 1

2
,j− 1

2) − y(i− 1
2
,j−1)

)(
∂vy

∂x

)
(i− 1

2
,j)

+
(
y(i− 1

2
,j) − y(i− 1

2
,j− 1

2)
)(

∂vy

∂x

)
(i− 1

2
,j−1)


y(i− 1

2
,j) − y(i− 1

2
,j−1)

(B.19)

3. Approximate the spatial derivatives in y–direction of the velocity components vx
and vy at positions

(
i− 1

2 ±
1
2 , j −

1
2

)
(crosses in Figure B.1) using a finite difference

quotient:

(
∂vx
∂y

)
(i− 1

2
± 1

2
,j− 1

2)
≈ v

(i− 1
2
± 1

2
,j)

x − v(i− 1
2
± 1

2
,j−1)

x

y(i− 1
2
± 1

2
,j) − y(i− 1

2
± 1

2
,j−1)

(B.20)

(
∂vy
∂y

)
(i− 1

2
± 1

2
,j− 1

2)
≈ v

(i− 1
2
± 1

2
,j)

y − v(i− 1
2
± 1

2
,j−1)

y

y(i− 1
2
± 1

2
,j) − y(i− 1

2
± 1

2
,j−1)

(B.21)
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4. Interpolate spatial derivatives in y–direction of the velocity components vx and vy
from positions

(
i− 1

2 ±
1
2 , j −

1
2

)
(crosses in Figure B.1) to position

(
i− 1

2 , j −
1
2

)
(empty circle in Figure B.1):

(
∂vx
∂y

)
(i− 1

2
,j− 1

2)
≈


(
x(i− 1

2
,j− 1

2) − x(i−1,j− 1
2)
)(

∂vx
∂y

)
(i,j− 1

2)
+
(
x(i,j− 1

2) − x(i− 1
2
,j− 1

2)
)(

∂vx
∂y

)
(i−1,j− 1

2)


x(i,j− 1

2) − x(i−1,j− 1
2)

(B.22)

(
∂vy
∂y

)
(i− 1

2
,j− 1

2)
≈


(
x(i− 1

2
,j− 1

2) − x(i−1,j− 1
2)
)(

∂vy

∂y

)
(i,j− 1

2)
+
(
x(i,j− 1

2) − x(i− 1
2
,j− 1

2)
)(

∂vy

∂y

)
(i−1,j− 1

2)


x(i,j− 1

2) − x(i−1,j− 1
2)

(B.23)

5. Multiply the spatial derivatives of the velocity components with the elastic moduli
K and µ that are defined at position

(
i− 1

2 , j −
1
2

)
:

σ̇
(i− 1

2
,j− 1

2)
xx =


(
K(i− 1

2
,j− 1

2) + 4
3µ(i− 1

2
,j− 1

2)
) (

∂vx
∂x

)
(i− 1

2
,j− 1

2)
+
(
K(i− 1

2
,j− 1

2) −
2
3µ(i− 1

2
,j− 1

2)
)(

∂vy

∂y

)
(i− 1

2
,j− 1

2)

 (B.24)

σ̇
(i− 1

2
,j− 1

2)
yy =


(
K(i− 1

2
,j− 1

2) −
2
3µ(i− 1

2
,j− 1

2)
) (

∂vx
∂x

)
(i− 1

2
,j− 1

2)
+
(
K(i− 1

2
,j− 1

2) + 4
3µ(i− 1

2
,j− 1

2)
)(

∂vy

∂y

)
(i− 1

2
,j− 1

2)

 (B.25)

σ̇
(i− 1

2
,j− 1

2)
xy = µ(i− 1

2
,j− 1

2)

((
∂vx
∂y

)
(i− 1

2
,j− 1

2)
+
(
∂vy
∂x

)
(i− 1

2
,j− 1

2)

)
(B.26)
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Figure B.1: Four elementary cells for the applied staggered grid FDM. All components of one
physical property are defined at the same position in the elementary cell. Spatial derivatives of
all unknowns are defined at positions marked with a cross and have to be arithmetically averaged
to nodal or center points.

From Equations B.24–B.26 it can be seen that the elastic moduli K and µ only need to
be defined at the center position of of one elementary finite difference cell. Elastic moduli
do not occur at any other position in the grid. This is different to the widely–used fully
staggered grid method (Virieux, 1986), where elastic moduli occur at different positions
within one elementary cell. If material boundaries occur in the numerical domain, the
numerical grid is built up in such a way that the approximated material boundaries run
along boundaries between elementary cells (see Figure 2.3 of Chapter 2). This way, the
center positions of elementary cells always lie on either side of a material boundary and
never on top of it. However, from Equations B.14 and B.15 it can be seen that the density
ρ needs to be defined at nodal points of the numerical grid. Nodal points can lie on top
of material boundaries (see Figure 2.3 of Chapter 2). For such nodal points the density
has to be arithmetically averaged from the materials of the four surrounding elementary
cells.
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B.1. Time discretization

The time derivatives in Equations B.14, B.15, B.24, B.25 and B.26 are approximated
with an explicit finite difference approach:

v
(ti+1)
x = v(ti)

x + ∆t

1
ρ

(
∂σxx
∂x

)
(
t
i+1

2

) +
1
ρ

(
∂σxy
∂y

)
(
t
i+1

2

)
 , (B.27)

v
(ti+1)
y = v(ti)

y + ∆t

1
ρ

(
∂σxy
∂x

)
(
t
i+1

2

) +
1
ρ

(
∂σyy
∂y

)
(
t
i+1

2

)
 , (B.28)

σ

(
t
i+1

2

)
xx = σ

(
t
i− 1

2

)
xx + ∆t

 (
K + 4

3µ
) (

∂vx
∂x

)
(ti)

+
(
K − 2

3µ
) (∂vy

∂y

)
(ti)

 , (B.29)

σ

(
t
i+1

2

)
yy = σ

(
t
i− 1

2

)
yy + ∆t

 (
K − 2

3µ
) (

∂vx
∂x

)
(ti)

+
(
K + 4

3µ
) (∂vy

∂y

)
(ti)

 , (B.30)

σ

(
t
i+1

2

)
xy = σ

(
t
i− 1

2

)
xy + ∆tµ

((
∂vx
∂y

)
(ti)

+
(
∂vy
∂x

)
(ti)

)
. (B.31)

In Equations B.27 – B.31 the spatial indeces i and j are removed compared to Equations
B.14, B.15, B.24, B.25 and B.26. The time index ti denotes any discrete time inter-
val that is calculated in the numerical algorithm. Solutions for the stress components
are calculated at half time increments. This procedure is the so–called staggered time
integration method (Virieux, 1986). Solutions of the velocity components (Equations
B.27 and B.28) are already used for the solutions of the stress components. The time
increment has to fulfill the von Neumann stability criterion that is calculated from the
wave velocity and the grid spacing of the numerical grid (Higham, 1996; Saenger et al.,
2000).
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B.2. Boundary conditions

The boundary conditions are explained with the help of Figure B.2 where four elementary
cells located at the left boundary of of the finite difference grid are shown. Figure B.2 is
comparable with Figure B.1, but the index i counting the nodal points in x–direction is
now equal to 1, 2 and 3. Boundary conditions at the other boundaries (bottom, right and
top boundary) can easily be reformulated from the ones at the left side of the numerical
domain. For a rigid boundary condition all velocity degrees of freedom are simply set to
0 at the nodal points located at the boundary:

vx (1, 1...ny) = 0, (B.32)

vy (1, 1...ny) = 0, (B.33)

where ny is the total number of nodal points located at the left boundary. A free slip
boundary condition means that the material does not deform perpendicular to the bound-
ary and that no shear stresses occur at the boundary. The first condition is implemented
in the numerical algorithm by setting the velocity degrees of freedom perpendicular to
the boundary to 0. Vanishing of the shear stresses at the boundary is achieved by setting
the velocity degrees of freedom parallel to the boundary at the nodal points located at
the boundary equal to the velocity degrees of freedom parallel to the boundary one nodal
point away from the boundary:

vx (1, 1...ny) = 0, (B.34)

vy (1, 1...ny) = vy (2, 1...ny) . (B.35)

For the free surface boundary condition virtual center points outside the numerical do-
main are introduced (Figure B.2). All stress components on these virtual center points
are set to 0. The velocity components on the nodal points located on the boundary are
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then calculated in the same way as they are calculated within the numerical domain
(Equations B.27 – B.31).
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Figure B.2: Four elementary cells for the applied staggered grid FDM located at the left
boundary of the numerical domain. Gray shaded area is the numerical domain. Stresses at the
virtual center points outside the numerical domain are set to 0 for a free boundary condition.

B.3. Numerical code

The numerical finite difference code for two–dimensional elastic and acoustic wave prop-
agation is written in MATLAB. It is not possible to show the entire code here. However,
the core part of the code is within the time loop and is shown below.
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1 for it = start:nt % TIME LOOP
2 % STRESS DERIVATIVES
3 helpvar = (Sxx(2:end,:) - Sxx(1:end-1,:)) ./ ...
4 (x2d_center(2:end,:) - x2d_center(1:end-1,:));
5 dSxx_dx(2:nx-1,2:nz-1) = interp1(z2d_center(1,:),helpvar’,z2d_node(1,2:nz-1))’;
6 helpvar = (Szz(:,2:end) - Szz(:,1:end-1)) ./ ...
7 (z2d_center(:,2:end) - z2d_center(:,1:end-1));
8 dSzz_dz(2:nx-1,2:nz-1) = interp1(x2d_center(:,1),helpvar ,x2d_node(2:nx-1,1)) ;
9 helpvar = (Sxz(2:end,:) - Sxz(1:end-1,:)) ./ ...

10 (x2d_center(2:end,:) - x2d_center(1:end-1,:));
11 dSxz_dx(2:nx-1,2:nz-1) = interp1(z2d_center(1,:),helpvar’,z2d_node(1,2:nz-1))’;
12 helpvar = (Sxz(:,2:end) - Sxz(:,1:end-1)) ./ ...
13 (z2d_center(:,2:end) - z2d_center(:,1:end-1));
14 dSxz_dz(2:nx-1,2:nz-1) = interp1(x2d_center(:,1),helpvar ,x2d_node(2:nx-1,1)) ;
15
16 % CALCULATE VELOCITIES
17 vx(2:nx-1,2:nz-1) = vx(2:nx-1,2:nz-1) + dt .* ...
18 (dSxx_dx(2:nx-1,2:nz-1) + dSxz_dz(2:nx-1,2:nz-1)) ./ ...
19 ( node_type(2:nx-1,2:nz-1,1).*rho(1) ...
20 + node_type(2:nx-1,2:nz-1,2).*rho(2) );
21 vz(2:nx-1,2:nz-1) = vz(2:nx-1,2:nz-1) + dt .* ...
22 (dSxz_dx(2:nx-1,2:nz-1) + dSzz_dz(2:nx-1,2:nz-1)) ./ ...
23 ( node_type(2:nx-1,2:nz-1,1).*rho(1) ...
24 + node_type(2:nx-1,2:nz-1,2).*rho(2) );
25
26 % APPLY BOUNDARY CONDITIONS (NOT SHOWN HERE)
27
28 % VELOCITY DERIVATIVES
29 helpvar = (vx(2:end,:) - vx(1:end-1,:)) ./ ...
30 (x2d_node(2:end,:) - x2d_node(1:end-1,:));
31 dvx_dx = interp1(z2d_node(1,:),helpvar’,z2d_center(1,:))’;
32 helpvar = (vz(:,2:end) - vz(:,1:end-1)) ./ ...
33 (z2d_node(:,2:end) - z2d_node(:,1:end-1));
34 dvz_dz = interp1(x2d_node(:,1),helpvar ,x2d_center(:,1)) ;
35 helpvar = (vz(2:end,:) - vz(1:end-1,:)) ./ ...
36 (x2d_node(2:end,:) - x2d_node(1:end-1,:));
37 dvz_dx = interp1(z2d_node(1,:),helpvar’,z2d_center(1,:))’;
38 helpvar = (vx(:,2:end) - vx(:,1:end-1)) ./ ...
39 (z2d_node(:,2:end) - z2d_node(:,1:end-1));
40 dvx_dz = interp1(x2d_node(:,1),helpvar ,x2d_center(:,1)) ;
41
42 % CALCULATE STRESSES
43 Sxx = Sxx + dt*( (2*mu(center_type)+lambda(center_type)) .*dvx_dx ...
44 + lambda(center_type) .*dvz_dz );
45 Szz = Szz + dt*( lambda(center_type) .*dvx_dx ...
46 + (2*mu(center_type)+lambda(center_type)) .*dvz_dz );
47 Sxz = Sxz + dt*( mu(center_type) .*(dvx_dz + dvz_dx));
48 end
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In the numerical code above, most of the variables and unknowns are self–explaining.
In all variables and unknowns the first spatial index is in x–direction, the second in y–
direction, e.g. in line 3 Sxx(2:end,:) means second entry to last entry in x–direction
and all entries in y–direction of the stress component σxx. The variables x2d_center and
z2d_center contain the coordinate values of the center positions of all elementary cells of
the numerical grid (here, x– and z–coordinates, not x– and y–coordinates). The variables
x2d_node and z2d_node contain the coordinate values of all nodal points. The value dt

is the time increment (∆t in Equations B.27 – B.31). The matrix node_type contains
two entries for each nodal point. The first entry is the number of elementary cells around
each nodal point belonging to material type 1 divided by four (possible values: 0, 1

4 ,
1
2 ,

3
4 and 1). The second entry is the number of elementary cells around each nodal point
belonging to material type 2 divided by four (i.e. 1 minus first entry). This formulation
allows an easy implementation of the arithmetic averaging of density values. The matrix
center_type contains one value for each center position. It is either 1 or 2, depending
which material type the elementary cell belongs to. The material property vectors rho,
mu and lambda each contains two values, the first for material type 1 and the second for
material type 2.

The different lines of the numerical code correspond to the equations described above in
the following relation:

• Lines 3, 4, 9 and 10 correspond to Equations B.6 and B.7.
• Lines 5 and 11 correspond to Equations B.8 and B.9.
• Lines 6, 7, 12 and 13 correspond to Equations B.10 and B.11.
• Lines 8 and 14 correspond to Equations B.12 and B.13.
• Lines 17 – 24 correspond to Equations B.27 and B.28.
• Lines 29, 30, 35 and 36 correspond to Equations B.16 and B.17.
• Lines 31 and 37 correspond to Equations B.18 and B.19.
• Lines 32, 33, 38 and 39 correspond to Equations B.20 and B.21.
• Lines 34 and 40 correspond to Equations B.22 and B.23.
• Lines 43 – 47 correspond to Equations B.29 – B.31.

Implementation of the different types of boundary conditions at the left boundary of the
numerical domain is shown below. Boundary conditions at the other boundaries (bottom,
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right and top boundary) can easily be reformulated from the ones at the left side of the
numerical domain.

1 switch bc_left
2 case ’rigid_boundary’
3 vx(1,2:nz-1) = zeros(1,nz-2);
4 vz(1,2:nz-1) = zeros(1,nz-2);
5 case ’free_slip’
6 vx(1,2:nz-1) = zeros(1,nz-2);
7 vz(1,2:nz-1) = vz(2,2:nz-1);
8 case ’free_surface’ % virtual stress-values outside domain = 0
9 helpvar = Sxx(1,:) ./ (2*(x2d_center(1,1)-x2d_node(1,1)));

10 dSxx_dx(1,2:nz-1) = interp1(z2d_center(1,:),helpvar,z2d_node(1,2:nz-1));
11
12 dSzz_dz(1,2:nz-1) = .5*(Szz(1,2:end)-Szz(1,1:end-1)) ./ ...
13 (z2d_center(1,2:end)-z2d_center(1,1:end-1));
14
15 helpvar = Sxz(1,:) ./ (2*(x2d_center(1,1)-x2d_node(1,1)));
16 dSxz_dx(1,2:nz-1) = interp1(z2d_center(1,:),helpvar,z2d_node(1,2:nz-1));
17
18 dSxz_dz(1,2:nz-1) = .5*(Sxz(1,2:end)-Sxz(1,1:end-1)) ./ ...
19 (z2d_center(1,2:end)-z2d_center(1,1:end-1));
20
21 vx(1,2:nz-1) = vx(1,2:nz-1) + dt .* ...
22 (dSxx_dx(1,2:nz-1) + dSxz_dz(1,2:nz-1)) ./ ...
23 ( node_type(1,2:nz-1,1).*rho(1)
24 + node_type(1,2:nz-1,2).*rho(2) );
25 vz(1,2:nz-1) = vz(1,2:nz-1) + dt .* ...
26 (dSxz_dx(1,2:nz-1) + dSzz_dz(1,2:nz-1)) ./ ...
27 ( node_type(1,2:nz-1,1).*rho(1)
28 + node_type(1,2:nz-1,2).*rho(2) );
29 end

In the code above Lines 3 and 4 correspond to Equations B.32 and B.33. Lines 6 and 7

correspond to Equations B.34 and B.35. For the free surface boundary condition Lines
9 – 28 are very similar to Lines 3 – 24 of the previously shown code for the nodal points
within the numerical domain, only that on the virtual center points outside the numerical
domain stress values equal to 0 are assumed.
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Finite element method

The finite element method used for spatial discretization of the governing equations
in Chapters 2 and 3 is here explained in more details. The finite element method is
explained in many textbooks, e.g. Hughes (1987); Bathe (1996); Zienkiewicz and Taylor
(2000); Cohen (2002). In the following not many more references will be given. Purely
elastic media, inviscid fluids (acoustic) and viscous fluids (visco–acoustic) are modeled
with the finite element method. Therefore, the general Equation A.18 is condidered in
the following. It is written out once more:

ρ¨̃u = B̃TDelB̃ũ + B̃TDviscB̃ ˙̃u, (C.1)

where

ũ =

{
ux

uy

}
, (C.2)

B̃ =


∂
∂x 0
0 ∂

∂y
∂
∂y

∂
∂x

 , (C.3)

and Del is the elastic constitutive matrix and Dvisc is the viscous constitutive matrix.
The symbol ˜ on top of certain terms denotes the continuous nature of these terms.
Equation C.1 represents two linear second order partial differential equations for the
two continuous unknown functions ux and uy. The discretization of Equation C.1 with
the finite element approach happens at the level of one single so–called finite element.
Equation C.1 is therefore reformulated for one single element:
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ρ̌¨̃u = B̃T ĎelB̃ũ + B̃T ĎviscB̃ ˙̃u. (C.4)

The symbol ˇ on top of certain terms denotes the fact that these terms are defined only
for one specific element and can be different for different elements. Later, the formulation
for one single finite element will be included into a global formulation. The functions
ũx and ũy are assumed to be continuous within the finite element under consideration.
A finite element is a small control area (in two dimensions, a control volume in three
dimensions) with a certain number of vertices. The first step in the discretization algo-
rithm of Equation C.4 consists of multiplying the equation with the test functions Ň.
At the same time integration over the area of the whole finite element (denoted Ω) is
carried out to get the weighted residual formulation:

∫
Ω

ŇT ρ̌¨̃udΩ =
∫

Ω
ŇT B̃T ĎelB̃ũdΩ +

∫
Ω

ŇT B̃T ĎviscB̃ ˙̃udΩ. (C.5)

The test functions are a set of functions that will be defined later. The fundamental
properties of the test functions is that one function has a value 1 at one vertex of the
element while all other functions have the value 0 at this vertex, and the sum of all test
functions is always 1 within the whole element. The general form of the matrix Ň is

Ň =

[
Ň1 0 Ň2 0 · · · Ňn 0
0 Ň1 0 Ň2 · · · 0 Ňn

]
, (C.6)

where n is the number of nodes in one finite element that is used. In Equation C.5 second
order spatial derivatives of the unknowns ũ and ˙̃u occur (B̃T B̃). Integration by parts
moves one spatial derivative from the unknowns to the test functions. It also introduces
a minus sign to all terms that are integrated by parts:

∫
Ω

ŇT ρ̌¨̃udΩ = −
∫

Ω

(
B̃Ň

)T
ĎelB̃ũdΩ−

∫
Ω

(
B̃Ň

)T
ĎviscB̃ ˙̃udΩ. (C.7)
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Integration by parts gives rise to boundary terms. In the finite element discretization
these terms are simply ignored. This is allowed since the boundary terms of one finite
element are the same but with opposite sign as the boundary terms of the neighboring
finite elements. When the formulations of the individual elements are put together into
the global formulation, these terms would anyway cancel each other out. Care has only to
be taken at the boundary of the numerical domain where the elements have no neighbors.
There, ingnoring the boundary terms of the integration by parts simply leads to a free
surface boundary condition, which is also called natural boundary condition. This is a
big advantage of the finite element formulation since it is straightforward to implement
a free surface. A free surface basically means not defining anything at this boundary.

The contiuous function ũ is now approximated with the so–called shape functions:

ũ =

{
ux

uy

}
≈

[
Ň1 0 Ň2 0 · · · Ňn 0
0 Ň1 0 Ň2 · · · 0 Ňn

]


ǔx1

ǔy1

ǔx2

ǔy2

...
ǔxn

ǔyn


= Ňǔ. (C.8)

Here, the so–called Galerkin method is applied, which means that the shape functions
to approximate the unknown function is the same as the test functions used in Equation
C.5. Components ǔxi and ǔyi are the displacements in x– and y–direction, respectively, at
the i–th vertex of the finite element under consideration. This approximation (Equation
C.8) reduces the continuous function ũ to discrete values ǔ at the vertices of the finite
element grid. Equation C.8 is now substituted into Equation C.7:

∫
Ω

ŇT ρ̌Ň¨̌udΩ = −
∫

Ω

(
B̃Ň

)T
ĎelB̃ŇǔdΩ−

∫
Ω

(
B̃Ň

)T
ĎviscB̃Ň ˙̌udΩ. (C.9)

The vector ǔ only contains values of the displacement field defined at the vertices of the
finite element and is indipendent of the x– and y–position. Therefore, the vector ǔ can
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be excluded from the integrals. At the same time a new B̌–matrix is defined and the
equation is slightly rearranged:

∫
Ω

ŇT ρ̌ŇdΩ¨̌u +
∫

Ω
B̌T ĎviscB̌dΩ ˙̌u +

∫
Ω

B̌T ĎelB̌dΩǔ = 0, (C.10)

where

B̌ =


∂Ň1
∂x 0 ∂Ň2

∂x 0 · · · ∂Ňn
∂x 0

0 ∂Ň1
∂y 0 ∂Ň2

∂y · · · 0 ∂Ňn
∂y

∂Ň1
∂y

∂Ň1
∂x

∂Ň2
∂y

∂Ň2
∂x · · · ∂Ňn

∂y
∂Ňn
∂x

 . (C.11)

Equation C.10 can be written in a more compact form:

M̌¨̌u + Č ˙̌u + Ǩǔ = 0, (C.12)

where

M̌ =
∫

Ω
ŇT ρ̌ŇdΩ, (C.13)

Č =
∫

Ω
B̌T ĎviscB̌dΩ, (C.14)

Ǩ =
∫

Ω
B̌T ĎelB̌dΩ. (C.15)

Matrix M̌ is called the local mass matrix, matrix Č is called the local damping matrix and
matrix Ǩ is called the local stiffness matrix. Equation C.12 is valid for one single finite
element of a larger finite element mesh. The assembly of a global system of equations is
in principle straightforward, but requires a good indexing scheme that links the equation
numbering of each individual element to the global indices. In general, at each nodal
point that is a vertex of more than one finite element, Equations C.12 of the different
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elements surrounding this nodal point are simply added. This leads to a global system
of equations:

Mü + Cu̇ + Ku = 0, (C.16)

where matrix M is called the global mass matrix, matrix C is called the global damping
matrix and K is called the global stiffness matrix. Vector u contains all the unknown
displacements of the whole numerical domain.

C.1. Lumped mass matrix

The local mass matrix M̌ (Equation C.13) written out is:

M̌ = ρ̌

∫
Ω



Ň1Ň1 0 Ň1Ň2 0 · · · Ň1Ňn 0
0 Ň1Ň1 0 Ň1Ň2 · · · 0 Ň1Ňn

Ň2Ň1 0 Ň2Ň2 0 · · · Ň2Ňn 0
0 Ň2Ň1 0 Ň2Ň2 · · · 0 Ň2Ňn

...
...

...
...

. . .
...

...
ŇnŇ1 0 ŇnŇ2 0 · · · ŇnŇn 0

0 ŇnŇ1 0 ŇnŇ2 · · · 0 ŇnŇn


dΩ. (C.17)

The matrix in Equation C.17 and therefore also the corresponding global mass matrix
M is not diagonal. For the solution of Equation C.16 the global mass matrix has to
be inverted. The inversion of a non–diagonal matrix is computationally expensive and
leads to a full matrix. For computational convenience the local mass matrix (Equation
C.17) is approximated with a diagonal matrix, the so–called local lumped mass matrix
(Zienkiewicz and Taylor, 2000; Cohen, 2002). In this process conservation of the mass of
one finite element, i.e.

∑
i

∑
j

M̌ij =
∑
i

M̌L,ii =
∫

Ω
ρ̌dΩ, (C.18)
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has to be preserved. In Equation C.18 M̌ij are the elements of the normal local mass
matrix M̌ and M̌L,ii are the diagonal elements of the local lumped mass matrix M̌L.
Mass lumping is done with the row sum method:

M̌L,ii =
∑
j

M̌ij = ρ̌

∫
Ω
Ňi

∑
j

ŇjdΩ = ρ̌

∫
Ω
ŇidΩ. (C.19)

The sum of all shape functions (
∑

j Ňj) is always 1. This is one of the fundamental
definitions of the set of shape functions. Therefore, the summation in Equation C.18 is
eliminated and the local lumped mass matrix becomes:

M̌L = ρ̌

∫
Ω



Ň1 0 0 0 · · · 0 0
0 Ň1 0 0 · · · 0 0
0 0 Ň2 0 · · · 0 0
0 0 0 Ň2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · Ňn 0
0 0 0 0 · · · 0 Ňn


dΩ. (C.20)

The local lumped mass matrix is now used for building up the global system of equations
(Equation C.16) that now becomes:

MLü + Cu̇ + Ku = 0. (C.21)

C.2. Numerical integration

The different terms that build the equation for each finite element (Equations C.14, C.15
and C.20) contain spatial integrals over the area of the finite element Ω. The finite
element mesh is not necessarily regular, i.e. each individual finite element has a different
shape and a different size. Therefore, the spatial integrals will be different for each
finite element and it would be computationally too expensive (though not impossible)
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to evaluate each integral analytically. The integrals are evaluated numerically using the
so–called Gauss–Legendre quadrature. A standardized coordinate system (ξ, ζ), also
called local coordinate system, is used. All the functions will be mapped to this local
coordinate sytem. A general function f , which is defined on the local coordinate system,
is numerically integrated over the area Ξ as follows:

∫
Ξ
f (ξ, ζ) dΞ ≈

nip∑
i=1

f (ξi, ζi)wi, (C.22)

where the positions (ξi, ζi) inside the area Ξ are the Gauss–Legendre quadrature points.
Only at these points the function f needs to be evaluated for calculating the total integral.
At each quadrature point a weighting factor wi is defined that has to be multiplied with
the function value at this point. For illustration one can imagine that the volume under
the two–dimensional continuous function f is split into nip columns. The height of each
column is the value of the function at the center of the column and wi is the area of the
base of the column. The exact values of (ξi, ζi) and wi will be defined later.

C.3. Isoparametric elements

Numerical integration (Equation C.22) is performed on the reference element Ξ (called
local element) that is defined in the local coordinate system (ξ, ζ). It is defined once and
stays the same for all finite elements of the numerical grid. However, the finite element
grid and all integrations in Equations C.14, C.15 and C.20 are defined in the physical
coordinate system (x, y) (also called global coordinate system). Therefore, a coordinate
transformations has to be performed to change the integration boundaries from global
to local coordinates.

Also, the spatial derivatives of the shape functions Ň in Equations C.14 and C.15 are
taken with respect to global coordinates (x, y). This implies that these derivatives change
from one element to the next depending on the actual shape and size of the element. It
is much more convenient to define the shape functions and their spatial derivatives on
the reference element Ξ. This way, they stay constant for all the elements and are now
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called N. However, it requires a second coordinate transformation to change the spatial
derivatives of the shape function with respect to local coordinates (ξ, ζ) to derivatives
with respect to global coordinates (x, y).

C.3.1. Transform derivatives of shape functions from local to global
coordinates

The specific shape functions N used in this thesis will be defined later. Generally, shape
functions are a set of easily differentiable functions (e.g. linear, quadratic, cubic) that
are defined on the local coordinate system (ξ, ζ). Their derivatives can be transformed
from local to global coordinates using the Jacobian matrix J̌, which is defined for each
element in the numerical grid:

{
∂
∂ξ
∂
∂ζ

}
=

[
∂x
∂ξ

∂y
∂ξ

∂x
∂ζ

∂y
∂ζ

]{
∂
∂x
∂
∂y

}
= J̌

{
∂
∂x
∂
∂y

}
. (C.23)

The Jacobian matrix J̌ is the differentiation of the global coordinates with respect to the
local coordinates and is only valid for one single finite element (note the symbol ˇ on
top of J̌). As done in Equation C.8 for the unknown vector ũ, coordinates within one
finite element can be approximated using the shape functions and the coordinates of the
vertices of the element:

[
x y

]
≈
[
Ň1 Ň2 · · · Ňn

]

x̌1 y̌1

x̌2 y̌2

...
...

x̌n y̌n

 . (C.24)

The values x̌i and y̌i are the global coordinates of the vertices of the finite element under
study. The Jacobian matrix J̌ is then defined for one finite element as
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J̌ ≈

[
∂N1
∂ξ

∂N2
∂ξ · · · ∂Nn

∂ξ
∂N1
∂ζ

∂N2
∂ζ · · · ∂Nn

∂ζ

]
x̌1 y̌1

x̌2 y̌2

...
...

x̌n y̌n

 . (C.25)

Note that in this formulation the locally defined spatial derivatives of the shape functions
occur and the symbol ˇ on top of the shape functionsNi disappears compared to Equation
C.24. As mentioned above, the shape functions and their derivatives are defined on the
local coordinates (ξ, ζ). Therefore, Equation C.25 allows a direct calculation of the
Jacobian matrix for each finite element. The desired coordinate transformation of the
derivatives of the shape functions with respect to local coordinates to derivatives with
respect to global coordinates is then

{
∂
∂x
∂
∂y

}
= J̌−1

{
∂
∂ξ
∂
∂ζ

}
. (C.26)

The superscript −1 denotes the inverse of a matrix. Equation C.26 can now be used to
calculate the spatial derivatives of the shape functions in Equations C.14 and C.15.

C.3.2. Transform integration boundaries from global to local coordinates

The numerical integration (Equation C.22) is performed on the local element Ξ. However,
the integrals in Equations C.14, C.15 and C.20 are defined in terms of global coordinates.
The necessary coordinate transformation is (here shown with an arbitrary function f):

∫
Ω
f (x, y) dΩ =

∫
Ξ
f (ξ, ζ) det

(
J̌
)
dΞ. (C.27)

The expression det
(
J̌
)
denotes the determinant of the Jacobian matrix J̌.
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C.3.3. Application of numerical integration and coordinate transforms

Applying the numerical integration and the coordinate transformations described above
to Equations C.14, C.15 and C.20 leads to the numerically calculated coefficients in
Equation C.21. The shape functions N and their derivatives are defined on the local
element Ξ (see below for the exact definition). The spatial derivatives are:

∇(ξ,ζ)N =

[
∂N1
∂ξ

∂N2
∂ξ · · · ∂Nn

∂ξ
∂N1
∂ζ

∂N2
∂ζ · · · ∂Nn

∂ζ

]
. (C.28)

Applying Equation C.26 to Equation C.28 leads to the spatial derivatives of the shape
functions with respect to global coordinates:

∇(x,y)Ň = J̌−1∇(ξ,ζ)N =

[
∂Ň1
∂x

∂Ň2
∂x · · · ∂Ňn

∂x
∂Ň1
∂y

∂Ň2
∂y · · · ∂Ňn

∂y

]
. (C.29)

This expression is now used to construct Č, Ǩ and M̌L as in Equations C.14, C.15
and C.20. The general form of all three coefficients Č, Ǩ and M̌L is, already including
Equation C.29,

∫
Ω
f
(
∇(x,y)Ň

)
dΩ =

∫
Ω

J̌−1f
(
∇(ξ,ζ)N

)
dΩ, (C.30)

where f is the function that creates Č, Ǩ or M̌L. Using Equation C.27 transforms the
integration boundaries in Equation C.30 from global to local coordinates:

∫
Ω

J̌−1f
(
∇(ξ,ζ)N

)
dΩ =

∫
Ξ
J̌−1f

(
∇(ξ,ζ)N

)
det
(
J̌
)
dΞ. (C.31)

Note that the shape functions themselves do not change during this coordinate trans-
formation from global to local coordinates. Applying the Gauss–Legendre quadrature
(Equation C.22) leads to the final summation formulation:
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∫
Ξ
J̌−1f

(
∇(ξ,ζ)N

)
det
(
J̌
)
dΞ =

nip∑
i=1

J̌−1f
(
∇(ξi,ζi)N

)
det
(
J̌
)
wi. (C.32)

This summation is carried out in the numerical finite element algorithm as a loop over
the integration points of one element.

C.4. The seven node triangular element

The finite element used in this thesis is a seven node triangular element shown in Figure
C.1. The local coordinates of the seven nodes of the element (green dots in Figure C.1)
are:

Node number 1: (ξN1, ζN1) = (0, 0) Node number 4: (ξN4, ζN4) =
(

1
2 , 0
)

Node number 2: (ξN2, ζN2) = (1, 0) Node number 5: (ξN5, ζN5) =
(

1
2 ,

1
2

)
Node number 3: (ξN3, ζN3) = (0, 1) Node number 6: (ξN6, ζN6) =

(
0, 1

2

)
Node number 7: (ξN7, ζN7) =

(
1
3 ,

1
3

)

0 1/3 1/2 1

0

1/3

1/2

1

1 2

3

4

56

0.101
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nodal point

Gauss-Legendre
integration point

ξ

ζ

7

Figure C.1: Standardized local element defined on local coordinates (ξ, ζ). The triangular
element consists of seven nodal points (green), which are locally numbered in the indicated
order. The seven Gauss–Legendre quadrature points are used for the numerical integration.
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For the seven node triangular element there are seven bi–quadratic shape functions. They
are shown in Figure C.2. The sum of all shape functions is equal to 1 everywhere within
the element. Each shape function is equal to 1 at its corresponding nodal point and equal
to 0 at all other nodal points. Using χ = 1− ξ − ζ the seven shape functions are:

N1 = (2χ− 1)χ+ 3ξζχ, (C.33)

N2 = (2ξ − 1) ξ + 3ξζχ, (C.34)

N3 = (2ζ − 1) ζ + 3ξζχ, (C.35)

N4 = 4χξ + 12ξζχ, (C.36)

N5 = 4ξζ + 12ξζχ, (C.37)

N6 = 4ζχ+ 12ξζχ, (C.38)

N7 = 27ξζχ. (C.39)
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Figure C.2: The seven bi–quadratic shape functions defined for the seven node triangular
element on the local coordinates (ξ, ζ).
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The spatial derivatives of the shape functions with respect to the local coordinates (ξ, ζ)
are:

∂N1

∂ξ
= −3 + 4ξ + 4ζ + 3ζχ− 3ξζ, (C.40)

∂N1

∂ζ
= −3 + 4ξ + 4ζ + 3χξ − 3ξζ, (C.41)

∂N2

∂ξ
= −1 + 4ξ + 3ζχ− 3ξζ, (C.42)

∂N2

∂ζ
= 3χξ − 3ξζ, (C.43)

∂N3

∂ξ
= 3ζχ− 3ξζ, (C.44)

∂N3

∂ζ
= −1 + 4ζ + 3χξ − 3ξζ, (C.45)

∂N4

∂ξ
= 4− 8ξ − 4ζ − 12ζχ+ 12ξζ, (C.46)

∂N4

∂ζ
= −4ξ − 12χξ + 12ξζ, (C.47)

∂N5

∂ξ
= 4ζ − 12ζχ+ 12ξζ, (C.48)

∂N5

∂ζ
= 4ξ − 12χξ + 12ξζ, (C.49)

∂N6

∂ξ
= −4ζ − 12ζχ+ 12ξζ, (C.50)

∂N6

∂ζ
= 4− 4ξ − 8ζ − 12χξ + 12ξζ, (C.51)

∂N7

∂ξ
= 27ζχ− 27ξζ, (C.52)

∂N7

∂ζ
= 27χξ − 27ξζ. (C.53)
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The local coordinates of the Gauss–Legendre quadrature points (red crosses in Figure
C.1) are:

Quadrature point number 1: (ξQ1, ζQ1) = (0.101286507323456, 0.101286507323456)
Quadrature point number 2: (ξQ2, ζQ2) = (0.797426985353087, 0.101286507323456)
Quadrature point number 3: (ξQ3, ζQ3) = (0.101286507323456, 0.797426985353087)
Quadrature point number 4: (ξQ4, ζQ4) = (0.470142064105115, 0.059715871789770)
Quadrature point number 5: (ξQ5, ζQ5) = (0.470142064105115, 0.470142064105115)
Quadrature point number 6: (ξQ6, ζQ6) = (0.059715871789770, 0.470142064105115)
Quadrature point number 7: (ξQ7, ζQ7) =

(
1
3 ,

1
3

)

The weighting factors defined at the seven Gauss–Legendre quadrature points are:

Quadrature point number 1: w1 = 0.0629695902724135
Quadrature point number 2: w2 = 0.0629695902724135
Quadrature point number 3: w3 = 0.0629695902724135
Quadrature point number 4: w4 = 0.066197076394253
Quadrature point number 5: w5 = 0.066197076394253
Quadrature point number 6: w6 = 0.066197076394253
Quadrature point number 7: w7 = 0.1125 = 9

80

The sum of all seven weighting factors is equal to 1
2 , which is equal to the area of the

triangular finite element.

C.5. Time discretization

The time derivatives in Equation C.21 are approximated with a special finite difference
approach, called Newmark–algorithm (Newmark, 1959; Hughes, 1987; Zienkiewicz and
Taylor, 2000). An explicit and an implicit variation of the Newmark–algorithm is used.
Both are predictor–corrector schemes. The time increment for the explicit Newmark
algorithm has to fulfill the von Neumann stability criterion that is calculated from the
wave velocity and the grid spacing of the numerical grid (Virieux, 1986; Higham, 1996;
Saenger et al., 2000). The implicit Newmark–algorithm calculates the displacement field
u as the primary unknown.
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• Predictor:

üprediction
ti+1

= − 1
β∆t2

uti −
1

β∆t
u̇ti −

1− 2β
2β

üti

u̇prediction
ti+1

= − γ

β∆t
uti +

(
1− γ

β

)
u̇ti +

(
1− γ

2β

)
∆tüti

(C.54)

• Solution:

uti+1 = −
(

1
β∆t2

ML +
γ

β∆t
C + K

)−1 (
Cu̇prediction

ti+1
+ MLü

prediction
ti+1

)
(C.55)

• Corrector:
üti+1 = üprediction

ti+1
+

1
β∆t2

uti+1

u̇ti+1 = u̇prediction
ti+1

+
γ

β∆t
uti+1

(C.56)

The explicit Newmark–algorithm calculates the acceleration field ü as the primary un-
known.

• Predictor:

uprediction
ti+1

= uti + ∆tu̇ti +
∆t2

2
üti

u̇prediction
ti+1

= u̇ti + ∆tüti + (1− γ) ∆tüti

(C.57)

• Solution:

üti+1 = − (ML + γ∆tC)−1
(
Cu̇prediction

ti+1
+ Kuprediction

ti+1

)
(C.58)

• Corrector:

uti+1 = uti + ∆tu̇ti +
∆t2

2
üti

u̇ti+1 = u̇ti + (1− γ) ∆tüti + γ∆tüti+1

(C.59)

In Equations C.54 – C.59 ti is the index of any time step and ∆t is the time increment.
The parameters β and γ are the two Newmark parameters. Their values are β = 1

4 and
γ = 1

2 (Newmark, 1959; Hughes, 1987; Zienkiewicz and Taylor, 2000).
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C.6. Boundary conditions

The implementation of boundary conditions in a finite element algorithm is straightfor-
ward because the natural boundary conditions are already included in the derivation of
Equation C.21. In other words, not defining any boundary conditions leads to a true
free surface with all stress components equal to 0. For a rigid boundary condition all
degrees of freedom (displacement, velocity and acceleration) are set to 0 at the nodal
points located at the boundary. For a free slip boundary condition the degrees of free-
dom perpendicular to the boundary are set to 0. For the degrees of freedom parallel to
the boundary nothing is defined and the natural boundary conditions lead to a vanishing
shear stress at the boundary.

C.7. Numerical code

The numerical finite element code for two–dimensional elastic and visco–acoustic wave
propagation is written in MATLAB. It is not possible to show the entire code here.
However, below, the assembly of the matrices ML, C and K is shown. In this piece of
code the following parameters and matrices apply:

dof_tot : Total number of degrees of freedom in the numerical domain
dof_per_el : Number of degrees of freedom in one element
el_tot : Total number of elements
EL_N : Matrix storing the indices of the nodes for each element
EL_DOF : Indices of the degrees of freedom for each element
GCOORD : Coordinates of all nodal points in the numerical domain
kb : Vector storing the bulk moduli of the different media
mu : Vector storing the elastic shear moduli of the different media
eta : Vector storing the shear viscosities of the different media
Phase : Type of media for each element, different media are numbered
pts_per_el : Number of Gauss–Legendre quadrature points in one element
shapeder : Spatial derivatives of shape functions

with respect to local coordinates
shape_matrix : Shape functions
rho : Vector storing the densities of the different media
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1 % MATRICES INITIALISATION
2 % =======================
3 MLG = sparse(dof_tot,dof_tot); % global lumped mass matrix
4 KG = sparse(dof_tot,dof_tot); % global stiffness matrix
5 CG = sparse(dof_tot,dof_tot); % global damping matrix
6 KI = sparse(dof_per_el*dof_per_el,el_tot); % helping
7 KJ = sparse(dof_per_el*dof_per_el,el_tot); % variables
8 KL = sparse(dof_per_el*dof_per_el,el_tot); % for storing
9 CL = sparse(dof_per_el*dof_per_el,el_tot); % of KG and CG

10
11 % MATRIX ASSEMBLY
12 % ===============
13 for iel = 1:el_tot % ELEMENT LOOP
14 % LOCAL MATRICES INITIALIZATION
15 num = EL_N(:,iel); % nodes in this element
16 g = EL_DOF(:,iel); % dofs in this element
17 coord = GCOORD(:,num)’; % node-coordinates in this element
18
19 Ds = zeros(3,3); % local elastic D-matrix
20 Dd = zeros(3,3); % local viscous D-matrix
21 B = zeros(3,dof_per_el);
22 K = zeros(dof_per_el,dof_per_el); % local stiffness matrix
23 C = zeros(dof_per_el,dof_per_el); % local damping matrix
24 ML = zeros(dof_per_el,dof_per_el); % local lumped mass matrix
25
26 % MATRICES D
27 Ds = [kb(Phase(iel))+4/3*mu(Phase(iel)) kb(Phase(iel))-2/3*mu(Phase(iel)) 0 ;...
28 kb(Phase(iel))-2/3*mu(Phase(iel)) kb(Phase(iel))+4/3*mu(Phase(iel)) 0 ;...
29 0 0 mu(Phase(iel))];
30
31 Dd = [ 4/3*eta(Phase(iel)) -2/3*eta(Phase(iel)) 0 ;...
32 -2/3*eta(Phase(iel)) 4/3*eta(Phase(iel)) 0 ;...
33 0 0 eta(Phase(iel)) ];
34
35 for k = 1:pts_per_el % LOOP OVER INTEGRATION POINTS
36 jac = shapeder(:,:,k)*coord;
37 detjac = det(jac);
38 shapederg = inv(jac) * shapeder(:,:,k);
39
40 B(1,1:2:dof_per_el-1) = shapederg(1,:);
41 B(2,2:2:dof_per_el) = shapederg(2,:);
42 B(3,1:2:dof_per_el-1) = shapederg(2,:);
43 B(3,2:2:dof_per_el) = shapederg(1,:);
44
45 K = K + B’ *Ds *B *detjac*wts(k);
46 C = C + B’ *Dd *B *detjac*wts(k);
47 ML = ML + (diag(sum(shape_matrix(:,:,k))’))*rho(Phase(iel))*detjac*wts(k);
48 end % END OF LOOP OVER INTEGRATION POINTS
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49
50 % FILL THE LOCAL MATRICES INTO THE GLOBAL MATRICES
51 rows = g(1:dof_per_el)*ones(1,dof_per_el);
52 cols = ones(dof_per_el,1)*g(1:dof_per_el)’;
53 KI(:,iel) = rows(:);
54 KJ(:,iel) = cols(:);
55 KL(:,iel) = K(:);
56 CL(:,iel) = C(:);
57
58 MLG(g,g) = MLG(g,g) + ML;
59 end % END OF ELEMENT LOOP
60
61 KG = sparse(KI(:),KJ(:),KL(:),dof_tot,dof_tot);
62 CG = sparse(KI(:),KJ(:),CL(:),dof_tot,dof_tot);

The summation necessary for the numerical integration (Equation C.22 and C.32) is done
with a loop over all integration points in the element (Lines 45 – 47). The local matrices
M̌L, Č and Ǩ are added to the global matrices ML, C and K for each element (Lines
51 – 56, 58, 61 and 62). For matrix ML this is done in an obvious way in Line 58 and in
a more sophisticated way for matrices C and K. The numerical code above is written in
a general way for a viscoelastic medium including both a shear modulus µ and a shear
viscosity η. In practice, depending on the medium an element belongs to, one of the two
moduli or both are defined to be 0. Then the formulation is either purely elastic (η = 0),
acoustic (η = 0 and µ = 0) or visco–acoustic (µ = 0). The different lines of the numerical
code correspond to the equations described above in the following relation:

• Lines 27 – 29 correspond to Equations A.12.
• Lines 31 – 33 correspond to Equations A.13.
• Line 36 corresponds to Equations C.25.
• Line 38 corresponds to Equations C.26 and C.29.
• Lines 40 – 43 correspond to Equations C.11.
• Line 45 corresponds to Equations C.15, C.22, C.27 and C.32.
• Line 46 corresponds to Equations C.14, C.22, C.27 and C.32.
• Line 47 corresponds to Equations C.20, C.22, C.27 and C.32.

Below, the core part of the time loop of the finite element code is shown. In this code
no external force term is included. An external force can be included in a simmilar way
as the boundary conditions.
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1 if strcmp(time_int,’explicit’)
2 invA = inv(MLG + NM_gamma*dt*CG);
3 accel_pred = accel;
4 end
5
6 for it = start:nt % TIME LOOP
7 switch time_int
8 case ’implicit’
9 % predictions

10 accel_pred = - 1/(NM_beta*dt^2)*displ - 1/(NM_beta*dt)*vel ...
11 - (1/2-NM_beta)/NM_beta*accel;
12 vel_pred = - NM_gamma/(NM_beta*dt)*displ ...
13 + (1-NM_gamma/NM_beta)*vel ...
14 + (1-NM_gamma/(2*NM_beta))*dt*accel;
15 % boundary conditions
16 displ(bcdof) = bcval;
17 displ_bc(bcdof) = bcval;
18 F_bc = KG*displ_bc;
19 % solver implicit (only free nodes are solved)
20 displ(Free) = cholmod( ...
21 ( 1/(NM_beta*dt^2)*MLG(Free,Free) ...
22 + NM_gamma/(NM_beta*dt)*CG(Free,Free) ...
23 + KG(Free,Free)) , ...
24 -(F_bc(Free) + CG(Free,Free)*vel_pred(Free) ...
25 + MLG(Free,Free)*accel_pred(Free)) );
26 % correctios
27 accel = accel_pred + 1/(NM_beta*dt^2) *displ;
28 vel = vel_pred + NM_gamma/(NM_beta*dt)*displ;
29
30 case ’explicit’
31 % prediction
32 displ_pred = displ + dt*vel + dt^2/2*accel;
33 vel_pred = vel + dt *accel + (1-NM_gamma)*dt*accel;
34 % solver
35 accel_pred = -invA(CG*vel_pred + KG*displ_pred);
36 % boundary conditions
37 accel_pred(bcdof) = bcval;
38 % corrections
39 displ = displ + dt*vel + dt^2/2*accel;
40 vel = vel + (1-NM_gamma)*dt *accel ...
41 + NM_gamma*dt *accel_pred;
42 accel = accel_pred;
43 end
44 end % END OF TIME LOOP
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Both the explicit and the implict Newmark algorithms are included in the code above.
The variable time_int is defined earlier in the code and defines if the implicit or the
explicit time integration method is used. For the implicit case only the degrees of freedom
are solved that are not overwritten by boundary conditions (Lines 15 – 19). These
degrees of freedom are defined by the variable Free. In the piece of code shown above
the following parameters and matrices apply:

start : Index of the first time step to be calculated
nt : Total number of time steps
time_int : Defines if the explicit or the implicit Newmark algorithm is used
NM_beta : Newmark parameter β
NM_gamma : Newmark parameter γ
displ : Displacement vector for the whole numerical domain
vel : Velocity vector for the whole numerical domain
accel : Acceleration vector for the whole numerical domain
bcdof : Indices of the degrees of freedom affected by boundary conditions
bcval : Boundary values
Free : Indices of the degrees of freedom not affected by boundary conditions

The different lines of the numerical code correspond to the equations described above in
the following relation:

• Lines 5 – 9 correspond to Equations C.54.
• Lines 15 – 20 correspond to Equation C.55.
• Lines 22 and 23 correspond to Equations C.56.
• Lines 27 and 28 correspond to Equations C.57.
• Line 30 corresponds to Equation C.58.
• Lines 34 – 37 correspond to Equations C.59.

Even though the whole numerical code can not be shown here, Figure C.3 shows a
relatively detailed flow chart of the finite element code. It shows a number of details that
are not further discussed here.
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define physical parameters like viscoelastic moduli, density
size of numerical domain, shape of inclusion/crack

define location of virtual receivers

if chosen:
start a new simulation

create finite element mesh using software Triangle

define boundary conditions
load all definitions and

matrices from the crashed
or finished simulation

define initial conditions

define location and time signal of external source

initialize all matrices used in the element loop

numerical integration
done with a loop over

integration points

time loop

loop over all elements:
global mass, stiffness

and damping matrices
are built up in this loop

MODEL SETUP
AND DEFINITIONS

MESH GENERATION

BOUNDARY AND
INITIAL CONDITIONS

EXTERNAL SOURCE

calculate constitutive matrices Del and Dvisc for the current element
(Equation A.12 and A.13)

initialize all matrices used in the loop over integration points

calculate the Jacobian matrix (Equation A.78),
the determinant of the Jacobian and the inverse of the Jacobian

calculate spatial derivatives of shape functions
in terms of global coordinates (Equation A.79 and A.82)

calculate matrix B (Equation A.64)

calculate K, C and ML, for all three use det(J) and wn
(Equations A.67, A.68, A.73, A.75, A.80 and A.85)

fill the local matrices K, C and ML at the propper position into the global matrices

create matrices for global node numbering and local-to-global mapping

define coordinates and weights of quadrature points, 
calculate shape functions and their derivatives at all quadrature points

(Equations A.86-A.106)

calculate remaining physical and numerical parameters like
phase velocities, time increment, number of time steps

define numerical parameters like number of numerical nodes
in different directions and at interfaces, physical time to be calculated,

finite element to be used, type of quadrature points, Newmark parameters

choose: start new simulation, continue a crashed simulation
or add time steps to a finished simulation

save everything calculated until here: in case of computer shut down or crash,
these definitions and matrices do not have to be calculated again

Newmark solver

record signal
at virtual receivers

save result from this time step for further processing and visualization

explicit implicit
prediction

solver
boundary conditions

correction
(Equations A.110-A.112)

prediction
boundary conditions

solver
correction

(Equations A.107-A.109)

else:
use parameters
from the crashed
or finished
simulation

Figure C.3: Flow chart of the finite element code.
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Resonant scattering

The focus of Chapter 2 is a comparison of the numerical accuracy of the different applied
numerical methods. However, in the course of the work performed for Chapter 2 some
physical observations could be made. One particularly interesting phenomena are the
waves that are trapped inside the circular inclusion, also indicated in Figure 2.1. The
velocity–time signal in y–direction at a receiver in the middle of the inclusion obtained
from a numerical simulation is shown in Figure D.1. Figure 2.6a) shows the displacement–
time signal in y–direction outside the inclusion. Because the displayed values are different
in the two figures, a direct comparision is not possible. However, it is clear that the
wavefield inside and outside the inclusion is very different. The internal reflections inside
the inclusion lead to a continuous periodic signal compared to a signal with only a few
distinct arrivals outside the inclusion (Figure 2.6a).
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Figure D.1: Velocity–time signal in y–direction at a receiver in the middle of the inclusion. The
velocity is normalized with the amplitude of the incident wave. The particular method used to
generate this figure is the spatial FEM with the implicit FDM in time.
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Three numerical simulations using the spatial FEM and the implicit FDM in time were
performed with three different frequencies (i.e. 13.4 Hz, 26.8 Hz and 134 Hz) in the
external source function. The Fourier spectra are caculated with the velocity–time signals
in y–direction at the receiver in the middle of the inclusion. These spectra are shown
in Figure D.2a) as thin lines. The thick lines in Figure D.2a) are the spectra of the
velocity–time signals in y–direction at a receiver exaclty at the inclusion boundary where
the incident wave first hits the inclusion. The signals at this receiver are used as a
reference because they include neither the multiple reflections inside the inclusion nor
the P– and S–waves that are radiated away from the inclusion due to the scattering
process. Therefore, the spectra at this receiver are smooth and only show the dominant
frequency of the external source (Figure D.2a). On the other hand, the spectra at the
receiver in the middle of the inclusion show a number of peaks and troughs.
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Figure D.2: a) Fourier spectra at two different receiver positions and from three different
numerical simulations of a plane P–wave being scattered at a circular inclusion. Different colors
represent simulations with different frequencies of the external source. Thin lines: Spectra of
velocity–time signal in y–direction at a receiver inside the inclusion. Thick lines: Spectra of
velocity–time signal in y–direction at a receiver exactly at the inclusion boundary where the
P–wave hits the inclusion first. b) Division of the two spectra from the two receiver locations for
each of the three simulations shown in a).
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Figure D.2b) shows the ratio of the two spectra in Figure D.2a). The peaks and troughs of
all of the resulting normalized spectra coincide in amplitude and frequency. This shows
that the succession of peaks and troughs does not depend on the externally applied
frequency but is a physical property of the heterogeneity, i.e. the resonance frequency.
The resonant behavior of a heterogeneity when a wave is scattered is also referred to as
resonant scattering (Werby and Gaunaurd, 1989, 1990; Hassan and Nagy, 1997). Every
object exhibits a resonance frequency that depends on the size, the shape and the material
properties of the object (Meyer et al., 1958; Anderson and Hampton, 1980a,b).
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Summary
Many seismic surveys are carried out in areas with porous or fractured rocks containing 
fluids, e.g. volcanic areas or hydrocarbon reservoirs. Therefore, the effects of fluids in 
porous or fractured rocks on the propagation of seismic waves are important to understand. 
In this thesis three such phenomena are investigated numerically, namely

• scattering at heterogeneities,
• Stoneley guided waves reflected and scattered at crack tips and
• oscillations on the pore–level due to surface tension effects.

The presented phenomena exhibit a multiscale character because seismic wavelengths can 
be orders of magnitude different from the objects that cause the phenomena, i.e. pores or 
cracks. Numerical modeling of such multiscale problems can be approached in different 
ways. On one hand, effective medium and mixture models can be used that approximate the 
small scale processes with effective material parameters and incorporate them into larger 
scale wave propagation models. On the other hand, direct numerical simulations can be 
used that fully resolve the small scale processes. Both approaches are followed in this 
thesis.

• Scattering of a plane P–wave at a circular object of a similar size as the P–wave’s wave-
length is modeled in two dimensions with different numerical techniques. The circular 
object is numerically fully resolved and the results are compared with an analytical solu-
tion. The goal is to compare numerical accuracies of the different methods for later use 
in direct numerical simulations. It is found that the finite element method is most suitable 
for spatial discretization of such problems due to the unstructured numerical mesh.

• The reflection of Stoneley guided waves at the tip of a crack is investigated with direct 
numerical simulations in two dimensions using the finite element method. The reflection 
coefficient lies between 43 % and almost 100 % and depends on the fluid filling the 
crack and on the crack geometry. The part of the Stoneley guided wave that is not 
reflected is scattered at the crack tip and P– and S–waves are emitted into the 
surrounding rock. The radiation pattern of these elastic body waves is described in 
detail for different model setups.

• Microscale oscillations within a rock can arise from non–wetting fluid blobs in partially 
saturated pores and cracks. When such fluid blobs are out of equilibrium, surface 
tension forces act as the restoring forces for the oscillations. Other explanations for 
internal oscillations in a rock can be given, e.g. Stoneley guided waves propagating 
back and forth along a finite crack. Such microscale oscillations are approximated and 
coupled to the macroscale wave equation. The resulting equations are solved in one 
dimension with the finite difference method. Results show that internal oscillations intro-
duce a strong velocity dispersion around the resonance frequency and temporarily 
modify the frequency content of a propagating wave. Energy is transferred between the 
internal oscillations and the wave.

This thesis covers a few aspects of fluid–rock interaction relevant for seismic wave propaga-
tion. For this, no existing models, such as the Biot model, are applied but direct numerical 
simulations and a newly developed continuum model are used. The thesis ends by discuss-
ing the applicability of the results to natural situations. Tremor–signals are observed for 
example around volcanic conduits or above hydcrocarbon reservoirs. The narrow frequency 
band of these signals may be explained, among other explanations, by oscillatory effects in 
the subsurface due to Stoneley guided waves that fall into resonance or due to surface 
tension–induced resonances of non–wetting fluids.
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