Reflection and scattering of Stoneley guided waves (SGWs) at the tips of fluid-filled fractures

 Marcel Frehner
 Department for Geodynamics and Sedimentology, University of Vienna, Austria, marcel.frehner@univie.ac.at

 Stefan M. Schmalholz
 Geological Institute, ETH Zurich, Switzerland, stefan.schmalholz@erdw.ethz.ch

SUMMARY

Reflection and scattering of Stoneley guided waves (SGWs) at the tip of a crack filled with a viscous fluid is studied numerically in two dimensions using the finite element method. The rock surrounding the crack is fully elastic and the fluid filling the crack is elastic in its bulk deformation behavior and viscous in its shear deformation behavior. The crack geometry, especially the crack tip, is resolved in detail by the unstructured finite element mesh. At the tip of the crack the SGW is reflected. The amplitude ratio between reflected and incident SGW is calculated from numerical simulations, which provide values between 43% and close to 100%, depending on the type of fluid filling the crack (water, oil or hydrocarbon gas), the crack geometry (elliptical or rectangular) and the presence of a small gas cap at the crack tip. The interference of incident and reflected SGWs leads to a node (zero amplitude) at the tip of the crack. At other positions along the crack this interference increases the amplitude. However, the exponential amplitude decay away from the crack makes the SGW difficult to detect at a relatively short distance away from the crack. The part of the SGW that is not reflected is scattered at the crack tip and emitted into the surrounding elastic rock as body waves. For fully saturated cracks the SGW is split into four parts: 1) SGW that propagates straight ahead, 2) reflected SGW, 3) two SGWs that make a sharp turn and propagate along the crack that is intersected by a second crack. Both cracks have an elliptical or rectangular shape. The horizontal axis is the normalized frequency of the fluid filling the crack.

Reflection

Finite element simulations of SGWs reflecting at the tip of water-filled cracks. Vertical displacement is displayed. Crack thickness: Wave length ≈ 1 : 100

Radiation pattern

Schematic

- **Elliptical crack**: Low-amplitude radiation
 - Incident SGW
 - New wave mode: Stoneley guided wave
 - Properties: Strongly dispersive (V_{SGW}=0 for f=f_0)
 - Not attenuating for inviscid fluids
 - Ferrazzini and Aki, JGR (1987); Korneev, Geophysics (2008)

- **Rectangular crack**: High-amplitude radiation
 - Incident SGW
 - New wave mode: Stoneley guided wave
 - Properties: Strongly dispersive
 - Not attenuating for inviscid fluids
 - Ferrazzini and Aki, JGR (1987); Korneev, Geophysics (2008)

Why are SGWs interesting?

- SGWs can exhibit a resonance frequency when propagating back and forth along a finite crack.
- Used for explaining low-frequency volcanic tremor (e.g., Chouet, Nature 1996)
- This study focuses on the reflection process.

Intersecting cracks

Two snapshots of the normalized absolute displacement of a SGW propagating along a crack that is intersected by a second crack. Both cracks have an elliptical shape and are filled with water. At the intersection point the incident SGW is split into four parts: 1) SGW that propagates straight ahead, 2) reflected SGW, 3) two SGWs that make a sharp turn and propagate along the second crack and 4) body waves emitted into the surrounding elastic rock.

Conclusions

The relatively strong reflection of SGWs at the tip of a crack enables them to fall into resonance when propagating back and forth many times along a crack. The emission of body waves makes the detection of SGW-related resonance signals possible.