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ABSTRACT

Geological folds are inherently 3D structures; therefore, they

also grow in three dimensions. Here, fold growth in all three

dimensions is quantified by numerically simulating upright sin-

gle-layer folds in 3D Newtonian media. Horizontal uniaxial

shortening leads to a buckling instability, which grows from a

point-like initial perturbation in all three dimensions by fold

amplification (vertical), fold elongation (parallel to fold axis)

and sequential fold growth (parallel to shortening direction)

of secondary (and further) folds adjacent to the initial isolated

fold. The two lateral directions exhibit similar averaged

growth rates, leading to bulk fold structures with aspect

ratios in map view close to 1. However, fold elongation is con-

tinuous with increasing bulk shortening, while sequential fold

growth exhibits jumps whenever a new sequential fold

appears and the bulk fold structure therefore suddenly occu-

pies more space. Compared with the two lateral growth direc-

tions, fold amplification exhibits a slightly higher growth rate.
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Introduction

Geological folds are important fea-
tures for structural geologists. In the
field, the orientation and geometry of
small-scale folds help identify larger
scale structures not visible in a single
outcrop (Price and Cosgrove, 1990;
Ramsay and Huber, 2002). Fold
structures also provide an essential
basis for tectonic interpretations, for
example, for estimating tectonic
shortening directions. Equally impor-
tant, wavelength, arclength and over-
all geometry of a fold are functions
of the rheological parameters of the
folded layer and its surrounding
matrix. Therefore, analysing the fold
shape can reveal information about
the rheological properties of the
involved rocks (Adamuszek et al.,
2011; Yamato et al., 2011; Frehner
et al., 2012). Recently, Hudleston
and Treagus (2010) reviewed the
state-of-the-art for gaining informa-
tion from fold shapes.
The fold shape observed in the

field is a result of the fold growth
history. Therefore, it is essential not
only to describe the fold shape but
also to understand the process of
fold growth. Geological folds are
inherently 3D structures; hence, their
growth also needs to be studied in
3D.

Definitions of 3D fold growth

There can be confusion about the ter-
minology of 3D fold growth. This is
primarily true for the two lateral
growth directions, for which various
terms have been used. Fold growth
parallel to the fold axis has been
termed lateral fold growth (Bretis
et al., 2011; Grasemann and Schmal-
holz, 2012), lateral extension (Reber
and Schmalholz, 2010) or lateral fold
propagation (Ramsey et al., 2008); for
fold growth parallel to the shortening
direction, the terms lateral fold propa-
gation (Cobbold, 1975; Mancktelow,
1999; Schmalholz, 2008; Adamuszek
et al., 2013), serial folding or buckling
(Cobbold, 1977; Schmalholz and Sch-
mid, 2012) or cellular buckling (Sch-
malholz and Schmid, 2012) have been
used. Here, lateral fold growth is used
as an umbrella term for both lateral
directions. Using propagation in con-
nection with buckle folding is mislead-
ing because the governing equations
describing buckling (i.e., slow viscous
deformation) do not account for any
propagation phenomena.
Using the coordinate system

defined in Fig. 1, the following ter-
minology for the three growth direc-
tions is used here:
1 Fold amplification (z-direction)
describes the growth from a fold
shape with low limb-dip angle to a
shape with larger limb-dip angle.

2 Fold elongation (y-direction) is par-
allel to the fold axis and describes
the growth from a dome-shaped
(3D) structure to a more cylindri-
cal fold (2D).

3 Sequential fold growth (x-direction)
is parallel to the shortening direc-
tion and describes the growth of
additional folds adjacent to the ini-
tial isolated fold. The initial fold is
termed the 0th sequential fold;
later grown folds are numbered
consecutively.

Fold growth in single directions

The three directions of fold growth
have been studied individually in
quite some detail, with fold amplifi-
cation probably being the best stud-
ied direction. Various theoretical
formulations exist in both 2D (Biot,
1961; Ramberg, 1963; Fletcher, 1974;
Schmalholz and Podladchikov, 2000;
Adamuszek et al., 2013) and 3D
(Ghosh, 1970; Fletcher, 1991, 1995;
M€uhlhaus et al., 1998). Fold elonga-
tion has mainly been studied using
geomorphological criteria. For exam-
ple, for the Californian Wheeler and
Mission Ridge anticlines (Keller
et al., 1999), as well as for folds in
the Iranian (Ramsey et al., 2008) and
Iraqi Zagros Mountains (Bretis
et al., 2011), elongation was identi-
fied based on the drainage pattern of
rivers flowing down from the grow-
ing anticlines and the distribution of
wind and water gaps. Sequential fold
growth from an isolated perturbation
has mainly been studied in analogue
(Cobbold, 1975; Abbassi and Manc-
ktelow, 1992) and 2D numerical
models (Cobbold, 1977; Lewis and
Williams, 1978; Zhang et al., 1996),
which have also been extended to
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multilayer systems (Watkinson, 1976;
Schmalholz and Schmid, 2012). In
the Pyrenees, Espina et al. (1996)
demonstrated sequential growth of
folds based on the description of
progressive unconformities.
None of the above studies consid-

ered and quantified all three growth
directions at once, because they were
inherently 2D studies, or because
they did not focus on quantifying
fold growth, or did not use a geome-
try or initial perturbation allowing
for fold growth quantification. Ana-
lytical solutions for 3D folding (e.g.,
Fletcher, 1991) consider only the ver-
tical growth of 2D initial perturba-
tions, which are periodic (i.e., single
wavelength) in the two lateral direc-
tions. The few numerical 3D folding
studies (e.g., Kaus and Schmalholz,
2006; Schmid et al., 2008) also do
not quantify fold growth in all three
directions. The aim of this study is
to numerically simulate simplified
test cases of 3D folding and to
quantify fold growth in all three
dimensions to better understand
the first-order relationship between
the different growth directions of a
single Newtonian layer in a Newto-
nian media.

Model and methods

Buckle folding is assumed to be a slow
Newtonian (linear viscous) flow pro-
cess. The finite-element (FE) code that
solves the corresponding continuum
mechanics equations is a 3D extension
of the 2D code explained in detail and
benchmarked in Frehner and Schmal-
holz (2006), Frehner (2011), and Freh-
ner and Exner (2014); the code can be

compared with the 3D FE code used
in Schmalholz (2008) and Reber and
Schmalholz (2010) and is explained
in Data S1. The model (Fig. 1) con-
sists of a higher-viscosity layer
(thickness HL) on top of a lower-
viscosity layer (thickness HM) with
viscosity ratio R. The model has a
free surface and is compressed hori-
zontally in the x-direction with a
constant background shortening
strain rate, _exx\0. This corresponds,
for example, to pure-shear analogue
models with lubricated base and side
walls or to fold belts, where fold-
axes-parallel flow is prohibited. The

initial thickness of the top layer is
used as a characteristic length scale
for normalizing all other lengths of
the model; hence HL = 1. The thick-
ness of the lower viscosity layer,
HM (distance to the bottom bound-
ary) is chosen to be large enough
that matrix-controlled folding
dominates (HM

HL
� 4

3
2
3R
� �1=3

; Schmal-
holz et al., 2002) and the exact
value of HM does not influence the
results. To allow a mechanical fold-
ing instability to develop, a point-
like initial perturbation is added to
the bottom and top interfaces of the
upper layer (Fig. 1) corresponding
to a two-dimensional Gaussian,

G ¼ A0exp
x2

2r2

� �
exp

y2

2r2

� �
; ð1Þ

where A0 = 0.01. The parameter r
determines the width of the initial
circular perturbation in the x- and
y-directions. Such an initial perturba-
tion is different from other 3D fold-
ing studies using a random
perturbation (Kaus and Schmalholz,
2006; Schmid et al., 2008), but is
essential here because it allows the
fold structure to develop and grow
from a single initiation point and
hence allows fold growth to be
quantified from this point. Figure 2
shows that some effective initial

Fig. 1 Initial numerical model grid, boundary conditions and coordinate system for
studying 3D fold growth. The model consists of a higher-viscosity layer (thin layer
on top) resting on a lower-viscosity layer. Grey values on the top interface repre-
sent the initial topography [Eq. (1) also given in the figure], normalized by the
thickness of the top layer. Arrows indicate the pure-shear shortening boundary
condition in the x-direction.
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Fig. 2 Analytically calculated fold amplification-rate spectra (z-direction) for differ-
ent viscosity ratios, R, between the upper higher-viscosity layer and the underlying
lower-viscosity layer according to Fletcher (1991). Dots indicate amplification-rate
values for the specific values of r (width of 2D Gaussian initial topography) used
in the numerical simulations. The effective wavelength of the initial topography is
defined as keff0 ¼ 2� FWHM ¼ 2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8 ln ð2Þrp
, where FWHM is the full width

at half maximum. All lengths (wavelength, FWHM, r) are normalized by the
thickness of the upper layer.
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wavelengths used in the FE-simula-
tions are shorter and some are longer
than the theoretically predicted dom-
inant wavelength.
During the FE-simulations, the

bulk amplitudes (or extent) of the
fold structure in all three coordinate
directions are calculated based on
the folded upper surface of the
model:

 Amplitude in z-direction:

Az ¼ zjx¼0;y¼0 � zref ð2Þ

 Amplitude in y-direction:

Ay ¼max ðyÞwhere zjx¼0� zref ¼A0

2
ð3Þ

 Amplitude in x-direction:

Ax ¼max ðxÞwhere zjy¼0� zref ¼A0

2
ð4Þ

The reference topography, zref, is
the average topography of the upper
model surface. Growth rates are cal-
culated assuming exponential growth
of the fold structure in all three
directions as (t is time):

qi ¼� 1

_exxt
ln

Ai

Aijt¼0

� �

þ
�1 for i ¼ z

0 for i ¼ y

1 for i ¼ x

8<
:

ð5Þ

The different summands originate
from the background deformation
field, which kinematically amplifies
the initial perturbation differently in
the different directions even without
an active mechanical instability. In
the x-direction, the fold structure
grows in the opposite direction to
the background shortening; in the
z-direction, the structure grows in
the same direction as the kinematic
background deformation; in the
y-direction, there is no background
extension or shortening.
Equations (2)–(5) are valid for the

bulk fold structure. Similarly, ampli-
tudes and growth rates can be calcu-
lated for each individual sequential
syn- and antiform. The amplitudes in
the z- and y-directions of the central
fold (initial or 0th sequential fold)
are equal to the bulk amplitudes.

Results and interpretations

As a representative example, the sim-
ulation with viscosity ratio R = 100

and initial perturbation r = 6
[Eq. (1)] is discussed below in detail
and shown in Figs 3, 4 and 6. All
additional simulation results for
R = 20, 40, 60, 100 and r = 2, 4, 6,
8 are summarized in Figs 5 and 7.

Fold shape evolution and individual
folds

Figure 3 shows snapshots of the
evolving fold structure with increas-
ing background shortening (s ¼
1� exp ð _exxtÞ), always chosen
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Fig. 3 Snapshots of a typical FE-simulation showing the evolution in top-view of
the 3D fold structure after different amounts of background shortening, s. Colours
represent the fold amplitude (z-direction) normalized by the thickness of the top
layer; black lines are contour lines of the normalized fold amplitude equal to half
the initial value (0.005). Additionally, the second snapshot illustrates how the fold
amplitudes in the x- and y-directions of the bulk fold structure are defined [Eqs (4)
and (3)]; the third snapshot illustrates the difference between the bulk fold structure
and the individual sequential folds (individual syn- and antiforms) and their num-
bering. Parameters for this simulation are: R = 100 and r = 6. A movie version of
this figure, but in 3D oblique view, is available in Video S1.
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immediately after the first appear-
ance of new sequential A0/2 topo-
graphic contour lines. The fold shape
evolution reveals growth in all
three dimensions. Fold amplification
(z-direction) is evident from the
increasing topography (indicated by
colours). Fold elongation (y-direc-
tion) is evident from the elongation
of the A0/2 topographic contour line
in the model centre. Sequential fold

growth (x-direction) is evident from
the sequential appearance of new A0/
2 topographic contour lines.
The initial isolated fold starts with

normalized amplitudes (normalized
by their initial values), y/x-aspect
ratio (in map view), and amplitude
ratios all equal to 1 (Fig. 4) repre-
senting the initial condition [Eq. (1)].
Both the z- and y-amplitudes of the
individual folds increase with increas-

ing shortening. At the same time,
growth in the x-direction of the
individual folds is limited to an x-
amplitude of around 1 (Fig. 4a)
showing that the bulk fold structure
grows in the x-direction by sequential
folding (i.e., appearance of new indi-
vidual folds) and not by the growth
of one individual anti- or synform.
The combination of the two lateral
growths leads to an increasing y/x-
aspect ratio of the initial isolated
fold (Fig. 4b). New sequential folds
appear with already elevated y/x-
aspect ratios and continue elongating
with further shortening (see also
Fig. 3). Generally, fold amplitude
ratios with the z-amplitude as the
denominator (Fig. 4c) decrease with
increasing shortening, indicating that
fold growth in the z-direction exhib-
its a higher rate than those in the
two lateral directions.

Bulk fold amplitudes and growth
rates in 3D

Figure 4 also shows the data for the
bulk fold structure (bold lines). The
bulk amplitudes in the z- and
y-directions are equal to those of the
initial isolated fold and increase con-
tinuously with increasing shortening.
Growth of the fold structure in the
x-direction (Fig. 4a) is marked by
sudden jumps every time a new
sequential fold appears. Despite these
jumps, the average amplitude in the
x-direction is of the same order as
that in the y-direction leading to an
almost constant bulk-fold y/x-aspect
ratio of around 1 (Fig. 4b). Such
equal growth in both lateral direc-
tions also occurs when using differ-
ent parameter combinations (Fig. 5)
and seems to be a universal feature
of 3D fold growth. However, these
two lateral directions exhibit lower
growth rates than the fold amplifica-
tion (growth in the z-direction), lead-
ing to fold amplitude ratios clearly
below 1 (Fig. 4c). This is also the
case for other tested parameter com-
binations (Fig. 5). A few exceptions
occur for a very short initial wave-
length (r = 2), for which the very
low amplification rate (Fig. 2) allows
the fold structure to grow at a higher
rate in the two lateral directions.
Applying Eq. (5) to the amplitude

data in Fig. 4a allows the fold
growth rates in all three directions to
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Fig. 4 Fold amplitude evolution in all three directions (a), fold y/x-aspect ratio (b),
and fold amplitude ratio (c) for both the individual sequential folds (individual
anti- and synforms; thin lines) and the bulk fold structure (thick lines) with increas-
ing bulk shortening for the same simulation as shown in Fig. 3. In the z- and
y-directions, the bulk fold amplitudes are equal to the individual fold amplitudes
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c) are derived from the data shown in (a). Vertical grey lines indicate the first
appearances of sequential folds.
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be calculated (Fig. 6). The initial fold
amplification rate (z-direction) of
around 19 is smaller than the value
theoretically predicted for this simu-

lation (Fig. 2; Fletcher, 1991). This
initial discrepancy arises because the
theoretical prediction is valid only
for a periodic initial perturbation

(single wavelength), while the Gauss-
ian perturbation used in the FE-sim-
ulation contains the entire
wavelength spectrum and therefore
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also wavelengths that grow at a
smaller rate. The fold amplification
rate increases slightly with increasing
shortening (Fig. 6a), while the fold
elongation rate (y-direction) stays
roughly constant at a value of around
10. The sequential fold growth rate
(x-direction) exhibits jumps when new
sequential folds appear. In the long
term, both lateral fold-growth rates
are similar, represented by a lateral
growth rate ratio close to 1 (Fig. 6b),
and about half the fold amplification
rate (growth rate ratio around 0.5).
This general relationship between the
different fold growth rates is con-
firmed by all other parameter combi-
nations (Fig. 7).

Discussion and conclusions

Even though fold growth in all
three directions is the result of the
same mechanical buckling instabil-
ity, the mode of growth in the
three directions is different. Fold
amplification and elongation are
primarily related to the growth of
the initial isolated fold, while

sequential fold growth is due to the
consecutive appearance of new
folds. Additionally, growth in the
two lateral directions results in the
involvement of more and more rock
material further away from the ini-
tial perturbation, while fold amplifi-
cation does not incorporate
significantly more material with
increasing shortening.
The numerical simulations repre-

sent simplified test cases. They only
comprise a two-layer system, linear
viscous (Newtonian) rheology, a
single initial perturbation, no ero-
sion at the upper surface and no
gravity. Erosion (Simpson, 2004)
and gravity (Schmalholz et al.,
2002) can increase and reduce the
fold amplification rate, respectively;
yet their influence on the two lat-
eral growth rates remains to be
studied. The aim of this study was
to demonstrate first-order phenom-
ena of 3D fold growth of a single
structure, and the modelled geome-
tries may not be translated one-to-
one to natural fold structures. In
nature, or in models using random

initial perturbation, several individ-
ual fold structures may initiate syn-
chronously from a multitude of
perturbations and later link with
each other. The presented results
illustrate that sequential fold growth
may be as important as fold elon-
gation for understanding the linkage
between initially isolated fold struc-
tures resulting in linked structures
with large y/x-aspect ratio (Grase-
mann and Schmalholz, 2012).
The lack of erosion and gravity

prevents the simulation results from
being directly compared with large-
scale near-surface folds, such as in
the Zagros Mountains. However,
the general result of almost equal
fold growth rates in both lateral
directions and a slightly larger fold
growth rate in the vertical direction
is expected to hold in more realistic
modelling scenarios or natural situ-
ations. If a fold structure originates
from an isolated circular initial per-
turbation (e.g., a diapir), its bulk y/
x-aspect ratio remains roughly
1 : 1. Even though the final fold
geometry in an appropriate y-z-
cross-section may be 2D, the evolu-
tion leading to this geometry is
fully 3D and a mechanical 2D
description may be inappropriate. If
a fold structure originates from a
line perturbation (e.g., a basement
fault), its bulk y/x-aspect ratio
remains large. In this case, approxi-
mating the fold as a 2D structure,
both geometrically and mechani-
cally, is valid.
The presented simulations cover

the early stages of folding (<20%
shortening). Various studies (e.g.,
Schmalholz and Podladchikov, 2000;
Schmalholz, 2006; Adamuszek et al.,
2013) have demonstrated that the
amplification rate decreases at later
folding stages. Whether the two
lateral fold growth rates also
decrease or whether the lateral
growths outpace the vertical growth
remains to be studied. However, such
numerical simulations may be chal-
lenging because they require a very
large domain in the x-y-direction to
capture the two lateral growths with-
out boundary effects. Future work
may focus on the effect of different
tectonic regimes (i.e., boundary
conditions) such as transpression and
transtension.
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fold growth rates of all simulations is shown in a single sub-figure (a), while for readability reasons, the ratios between fold
growth rates with the z-growth rate as the denominator are distributed across four sub-figures (b–e). The curves shown in
Fig. 6 (R = 100, r = 6) are decorated with a light grey background.
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