
C
t

M
a

b

c

a

A
R
R
A

K
S
W
N
A
F
F

1

s
A
m
1
f
s
w
i
(
i
s
c
g

0
d

Physics of the Earth and Planetary Interiors 171 (2008) 112–121

Contents lists available at ScienceDirect

Physics of the Earth and Planetary Interiors

journa l homepage: www.e lsev ier .com/ locate /pepi

omparison of finite difference and finite element methods for simulating
wo-dimensional scattering of elastic waves

arcel Frehnera,∗, Stefan M. Schmalholza, Erik H. Saengera,b, Holger Steebc

Geological Institute, Department of Earth Sciences, ETH Zurich, 8092 Zurich, Switzerland
Spectraseis AG, 8005 Zurich, Switzerland
Multi Scale Mechanics, TS, CTW, University of Twente, 7500 AE Enschede, The Netherlands

r t i c l e i n f o

rticle history:
eceived 30 October 2007
eceived in revised form 10 June 2008
ccepted 7 July 2008

eywords:
cattering
ave propagation

umerical methods
nalytical solution
inite element method

a b s t r a c t

Two-dimensional scattering of elastic waves in a medium containing a circular heterogeneity is investi-
gated with an analytical solution and numerical wave propagation simulations. Different combinations of
finite difference methods (FDM) and finite element methods (FEM) are used to numerically solve the elas-
todynamic wave equations. Finite difference and finite element techniques are applied to approximate
both the time and space derivatives and are combined in various ways to provide different numerical
algorithms for modeling elastic wave propagation. The results of the different numerical algorithms are
compared for simulations of an incident plane P-wave that is scattered by a mechanically weak circu-
lar inclusion whereby the diameter of the inclusion is of the same order than the P-wave’s wavelength.
For this scattering problem an analytical solution is available and used as the reference solution in the
comparison of the different numerical algorithms. Staircase-like spatial discretization of the inclusion’s
inite difference method circular shape with the finite difference method using a rectangular grid provides accurate velocity and
displacement fields close to the inclusion boundary only for very high spatial resolutions. Implicit time
integration based on either finite differences or finite elements does not provide computational advan-
tages compared to explicit schemes. The best numerical algorithm in terms of accuracy and computation
time for the investigated scattering problem consists of a finite element method in space using an unstruc-
tured mesh combined with an explicit finite difference method in time. The computational advantages
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. Introduction

Propagation of seismic waves can be described analytically for
ome specific geometrical setups (Love, 1927; Achenbach, 1973;
ki and Richards, 1980; Ben-Menahem and Jit Singh, 1981). For
ore complex geometries, ray-tracing methods (Moser and Pajchel,

997; Cerveny, 2001) are able to approximate propagation of high-
requency seismic waves when the wavelength is significantly
maller than the characteristic size of heterogeneities. For seismic
aves having a significantly larger wavelength than the character-

stic size of heterogeneities, effective medium theories can be used
Mavko et al., 1998). However, if the wavelengths of the propagat-

ng waves and the characteristic size of heterogeneities are of the
ame order, numerical methods are essential. Particular numeri-
al challenges are for example scattering phenomena in complex
eometries (Korneev and Johnson, 1996), wave attenuation due to
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ent numerical algorithms are discussed.
© 2008 Elsevier B.V. All rights reserved.

ave induced fluid flow (Carcione et al., 2003; Masson and Pride,
007), wave propagation in three-phase media (Carcione et al.,
004; Santos et al., 2005) or microscale modeling of wave prop-
gation in poroelastic rocks (Saenger et al., 2007). Although on
ifferent scales, all these challenges comprise wave scattering at
eterogeneities.

For numerical modeling of seismic wave propagation different
ethods are available (Kelly and Marfurt, 1990; Carcione et al.,

002; Cohen, 2002) which can have advantages and disadvantages
epending on the particular problem under study. Methods used

n this paper are the finite difference method (FDM) (Smith, 1985;
mes, 1992; Moczo et al., 2007) and the finite element method

FEM) (Hughes, 1987; Bathe, 1996; Zienkiewicz and Taylor, 2000).
oth methods can be used to discretize spatial as well as time
erivatives. Different combinations of spatial and temporal dis-

retization methods using FDM and FEM are compared in this
tudy. The different algorithms are described and applied to a
wo-dimensional (2D) elastic scattering problem for comparison.
nalytical solutions for scattered wave fields are available for dif-

erent cases (Ying and Truell, 1956; White, 1958; Liu et al., 2000;

http://www.sciencedirect.com/science/journal/00319201
http://www.elsevier.com/locate/pepi
mailto:marcel.frehner@erdw.ethz.ch
dx.doi.org/10.1016/j.pepi.2008.07.003
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anchez-Sesma and Iturraran-Viveros, 2001). Liu et al. (2000) pro-
ide an analytical solution to the particular 2D scattering problem
onsidered in this study. It is used as the reference solution for the
omparison of the numerical results.

The main aim of this study is to compare results of numerical
ave propagation simulations based on different numerical algo-

ithms and to discuss accuracy and computational performance of
he different algorithms for a particular scattering problem. The
nvestigated 2D scattering problem consists of a mechanically weak
ircular inclusion embedded in a stiffer elastic medium whereby a
lane P-wave is scattered by the inclusion having a diameter similar
o the P-wave’s wavelength.

. Model setup

Fig. 1a displays a snapshot of a numerical wave propagation sim-
lation showing the 2D model used in this study. The model consists
f a mechanically weak circular inclusion with radius a = 25 m
mbedded in a homogeneous elastic medium. A synthetic receiver
laced outside the inclusion records the particle displacement in
oth x- and y-directions. Boundary conditions are free surface at
= Ly (all stresses � = 0), rigid boundary at y = 0 (all displacements
= 0) and free slip at x = 0 and x = Lx (displacement in x-direction
x = 0 and shear stress �xy = 0). All physical parameters are given in
able 1. The surrounding material represents an average sedimen-
ary rock with the two Lamé constants �1 and �1 equal to each
ther. The inclusion represents a hole filled with gas that is approx-
mated with a shear modulus �2 = 0 and Lamé constant �2 1000
imes smaller compared to the surrounding rock.

Instead of applying an external force (i.e. force term in the elas-
odynamic wave equation) an initial perturbation in the particle

elocity field in y-direction is prescribed at y = Ly. The resulting
lane P-wave is a Ricker wavelet with a dominant wavelength of
dom = 157.1 m (dominant frequency fdom = 26.8 Hz). Fig. 1b shows a
napshot of the resulting plane P-wave travelling from the bottom
f the model towards the top, and being scattered at the inclu-

3

t

ig. 1. Two representative snapshots of the wave field to illustrate the numerical setup. Th

DM in time. Plotted is the normalized absolute value of the displacement field (1012
√

imulations. A plane P-wave travels from bottom to top of the model. Values for indicated
ynthetic receiver used for further analysis and has a distance to the center of the inclusio
tudy. Values higher than 2 (maximal amplitude of incident wave) are reduced to 2 and c
ndicates.
anetary Interiors 171 (2008) 112–121 113

ion. Clearly visible is the direct plane P-wave that stays relatively
ndisturbed behind the heterogeneity, and the primary scattered
-wave and S-wave (P-to-S-converted) that are emitted in all direc-
ions from the circular inclusion. In addition, a part of the wave is
rapped inside the inclusion.

. Methods

All numerical methods applied here discretize the linear elas-
odynamic wave equations in 2D (Love, 1927; Lindsay, 1960;
chenbach, 1973) given by⎧⎨
⎩
�
∂2ux
∂t2

�
∂2uy
∂t2

⎫⎬
⎭

=

⎧⎪⎪⎨
⎪⎪⎩

∂

∂x

(
(�+ 2�)

∂ux
∂x

+ �∂uy
∂y

)
+ ∂

∂y

(
�

(
∂ux
∂y

+ ∂uy
∂x

))
∂

∂y

(
�
∂ux
∂x

+ (�+ 2�)
∂uy
∂y

)
+ ∂

∂x

(
�

(
∂ux
∂y

+ ∂uy
∂x

))
⎫⎪⎪⎬
⎪⎪⎭ .

(1)

ariable � is density, t is time, x and y are the spatial coordinates
nd � and � are the two Lamé constants, where � is commonly
eferred to as the shear modulus. The applied numerical algorithms
re based on the FDM and the FEM but use different combinations of
he two methods for discretizing space and time derivatives. Three
asically different algorithms are applied:

1) Explicit FDM in time, FDM in space.
2) Explicit or implicit FDM in time, FEM in space.
3) FEM in time, FEM in space.
.1. Explicit FDM in time and FDM in space

For the FDM in space Eq. (1) is split into five first-order differen-
ial equations using the velocity–stress formulation. The numerical

e particular method used to generate this figure is the spatial FEM with the implicit

u2
x + u2

y ). (a) Early snapshot of the simulation to show the model setup used for all

physical parameters are given in Table 1. Black dot to the right of the inclusion is a
n of five times the radius a. (b) Snapshot after 0.201 s to show the wave field under
olored in black. Amplitudes inside circular inclusion are higher than the gray scale
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Table 1
Geometrical and physical properties used for the scattering modeling

Parameter Value

Model size in x-direction Lx = 1000 m
Model size in y-direction Ly = 1000 m
Radius of inclusion a = 25 m
Density of surrounding media �1 = 2700 kg/m3

Density of inclusion �2 =�1/100
Lamé constant � of surrounding media �1 = 16 GPa
Lamé constant � of inclusion �2 =�1/1000
Lamé constant � of surrounding media (=shear modulus) �1 = 16 GPa
Lamé constant � of inclusion (=shear modulus) �2 = 0 Pa
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Fig. 3. Sketch of discretization of material properties with the applied staggered
grid FDM. Big black circle is the inclusion with different material properties than
the surrounding medium. Shaded area represents the numerical discretization of
the same inclusion. Discretization runs along boundaries between elementary cells.
E
d
a

F
m
o
a
a
t
T

-wave velocity of surrounding medium VP1 = 4216 m/s
-wave velocity of inclusion VP2 = 770 m/s
-wave velocity of surrounding medium VS1 = 2434 m/s
-wave velocity of inclusion VS2 = 0 m/s

ethod commonly used to model wave propagation is the FDM on
staggered grid (Virieux, 1986) using the explicit FDM for time dis-
retization. For this method the two components of the 2D velocity
eld are defined at different discrete positions within the grid. Com-
onents of the stress tensor are also defined at different positions.
his implies that both density and shear modulus have to be defined
t more than one position in an elementary cell (Virieux, 1986).
or modeling high material contrasts special averaging methods of
hese parameters (Moczo et al., 2002) are necessary to avoid numer-
cal stability problems. Saenger et al. (2000) proposed a modified
taggered grid method, i.e. the rotated staggered grid (RSG), for
hich all components of one physical property are defined at the

ame position in the grid. No averaging of elastic moduli is neces-
ary. Bohlen and Saenger (2006) presented a stability and accuracy
tudy and demonstrated that the RSG method is more accurate
ompared to the standard staggered grid method.

The FDM used in this paper is equivalent to the RSG-FDM. Fig. 2
hows the elementary cell of the grid. Crosses indicate positions

here spatial derivatives of the five unknowns (vx, vy, �xx, �yy and
xy) are calculated. The spatial derivatives are averaged to nodal
oints (for spatial derivatives of stress components) or to center
oints (for spatial derivatives of velocity components), respec-
ively, to multiply them with the appropriate material parameter.

ig. 2. Elementary cell for the applied staggered grid FDM. All components of one
hysical property are defined at the same position in the elementary cell. Spatial
erivatives of all unknowns are defined at positions marked with a cross and have
o be arithmetically averaged to nodal or center points.

d
a
c
s
g
t
w
s
F
s
d

3

1
i
i
c
2
s
t
c
c
p
T
a
(
a
o
i

lastic moduli are defined on big dots (center points) and density is defined on small
ots (nodal points). Four elementary cells are blown up to illustrate the arithmetic
veraging of the density.

ig. 3 sketches the discretization of properties in an inhomogeneous
edium. Each elementary cell belongs to one of the two media. In

ther words, the boundary between different media is discretized
long boundaries between elementary cells. According to Kruger et
l. (2005), elastic moduli are defined at the center of each elemen-
ary cell and can only have the value of either of the two media.
herefore, no averaging of elastic moduli is necessary. Density is
efined at nodal points of the grid and has to be arithmetically
veraged at nodal points where the four surrounding elementary
ells do not belong to the same medium (Kruger et al., 2005). This
patial discretization method is not restricted to equally spaced
rids but allows changes in spatial resolution, e.g. higher resolu-
ion towards the inclusion. However, the grid is always rectangular,
hich leads to a staircase-like discretization of the circular inclu-

ion. First-order time derivatives are discretized using the explicit
DM together with a staggered method in time. The von Neumann
tability criterion (Higham, 1996; Saenger et al., 2000) is used to
efine the maximum time increment for stable solutions.

.2. Implicit and explicit FDM in time and FEM in space

The FEM for spatial discretization used in this study (Hughes,
987; Bathe, 1996; Zienkiewicz and Taylor, 2000) employs 7-node
soparametric triangular elements with biquadratic continuous
nterpolation functions (Zienkiewicz and Taylor, 2000). Numeri-
al grids are generated by the software Triangle (Shewchuk, 1996,
002) that produces Delaunay-type meshes. Fig. 4 sketches the
patial discretization of the circular inclusion with an unstruc-
ured triangular grid. Such grids allow strong spatial resolution
hanges over relatively short distances, e.g. higher resolution
lose to the inclusion boundary. Numerical implementation com-
rises the Galerkin weighted residual method (Zienkiewicz and
aylor, 2000), lumped mass matrix (Bathe, 1996; Cohen, 2002)

nd Gauss–Legendre quadrature with seven integration points
Zienkiewicz and Taylor, 2000). Compared to the FDM described
bove, material properties are defined for each element and not
n individual nodal points. Therefore, no interpolation and averag-
ng of these properties is necessary because the numerical mesh is
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Here, a time-discontinuous Galerkin method (DGT) is applied (Chen
et al., 2006). The DGT method is based on classical C0-continuous
interpolation and test functions in the spatial domain, and discon-
tinuous interpolation and test functions in the temporal domain,
respectively (Fig. 5). The actual elements used were 6-node triangu-
ig. 4. Sketch of discretization of inhomogeneity using an unstructured triangular
alculated. Spatial resolution can increase towards the inclusion boundary that lead
way from the boundary.

enerated in such a way that boundaries between different media
oincide with element boundaries.

Different methods are available to discretize the second-order
ime derivative in Eq. (1), both explicit and implicit, e.g. the
eapfrog-method (Bathe, 1996), the Wilson cycle (Zienkiewicz
nd Taylor, 2000) or the Newmark-algorithm (Newmark, 1959;
ughes, 1987). In this study a variation of the implicit Newmark-
lgorithm is applied (Zienkiewicz and Taylor, 2000). It uses a
redictor–corrector scheme and calculates the displacement field u
s the primary unknown, unlike the classical Newmark-algorithm
hat calculates the acceleration a as the first unknown.

Predictor:

aprediction
i+1 = − 1

ˇ �t2
ui −

1
ˇ�t

vi −
1 − 2ˇ

2ˇ
ai

vprediction
i+1 = − �

ˇ �t
ui +

(
1 − �

ˇ

)
vi +

(
1 − �

2ˇ

)
�tai

(2)

Solution:

ui+1 = −
(

1
ˇ �t2

M + K

)−1

(Maprediction
i+1 ) (3)

Corrector:

ai+1 = aprediction
i+1 + 1

ˇ �t2
ui+1

vi+1 = vprediction
i+1 + �

ˇ �t
ui+1

(4)
n Eqs. (2)–(4) i is the index of any discrete time interval, �t
s the time increment, u, v and a are the two-dimensional dis-
lacement, velocity and acceleration fields, respectively, M is the

umped mass matrix and K is the stiffness matrix. For ˇ and �

F
m
n

mesh. Each triangle consists of seven nodal points on which the displacement is
very accurate discretization of the boundary without the need of a high resolution

he optimal values of 1/4 and 1/2 are chosen (Newmark, 1959;
athe, 1996). For explicit time integration the classical Newmark-
lgorithm (Newmark, 1959; Hughes, 1987) is used. It is also a
redictor–corrector method but calculates the acceleration field a
s the first unknown. To make this algorithm explicitˇ is set to zero.

.3. FEM in both time and space

Applying the FEM in the temporal domain can be traced back to
he seminal work of Argyris and Scharpf (1969) and of Fried (1969).
ig. 5. Discontinuous interpolation functions of the time-discontinuous Galerkin
ethod (DGT) in the time domain. At time tn two degrees of freedom for vx are

ecessary, one for the time-element [tn−1 tn] and one for the time-element [tn tn+1].
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ar elements with biquadratic continuous interpolation functions
n space and linear discontinuous interpolation functions in time.
EM-meshes are created by a Delaunay-type mesh generator (GID-
IMNE). Furthermore, the hybrid velocity integration (HVI) method

s applied, which is based on a pure velocity formulation of the
overning first-order equations in time. According to the applied
iscontinuous interpolation functions in the temporal domain, the

nherent displacement field can be calculated in a subsequent, i.e.
ost-processing step. Thus, a classical solution technique based
n the numerical investigation of a set of first-order equations in
ime can be circumvented. Technical details and further numerical
omparisons between classical FEM schemes and DGT or HVI tech-
iques are explained by Chen et al. (2008). According to the classical
ubnov–Galerkin scheme, interpolation and test functions belong
o the same function space leading to an algebraic system of equa-
ions with symmetric matrices. In the present numerical scheme,
he temporal inter-element continuity is enforced by a special flux
reatment technique (Chen et al., 2006). Thus, stable and efficient
umerical results with a low amount of numerical dispersion and
issipation are obtained with rather large time steps.

.4. Analytical solution

The analytical solution of the scattering problem displayed in
ig. 1a is described by Liu et al. (2000). It provides the full seis-
ogram at any synthetic receiver in the model domain. Such a

ynthetic receiver is defined in terms of cylindrical coordinates r
nd 	 for a coordinate system centred at the inclusion center. The
olution in terms of displacement potentials takes the following
orm for synthetic receivers outside the inclusion:

(t, r, 	) =
∫ +∞

−∞
G(ω)

( +∞∑
m=0

AmH
(1)
m (kPr) cos(m	)

)
e−iωt dω, (5)

(t, r, 	) =
∫ +∞

−∞
G(ω)

( +∞∑
m=1

BmH
(1)
m (kSr) sin(m	)

)
e−iωt dω. (6)

n Eqs. (5) and (6) ϕ and  are the displacement potentials of the
- and the S-wave, respectively, G is the complex-valued frequency

pectrum of the displacement potential of the incident wave, ω is
ngular frequency, H(1)

m is the Hankel function of the first kind of
rder m and kP and kS are the wave numbers of the P- and the S-
ave, respectively. The two rather complicated coefficients Am and

m are given in the Appendix of Liu et al. (2000) and are determined

w
s
c
y

ig. 6. Synthetic seismograms (displacement–time–signal) at the receiver shown in Fig. 1a
umerical methods. Black lines are the synthetic seismograms obtained analytically. (a) P
he two subfigures.
anetary Interiors 171 (2008) 112–121

rom the boundary condition at the inclusion interface. To get the
nal solution the integrals from−∞ to +∞and the summations over
have to be calculated numerically. Both the number of summands

nd the finite integration and summation boundaries are chosen
n a way that the summation converges to a constant value. From
qs. (5) and (6) the displacement field of the scattered wave can be
eparated into P- and S-wave fields (uP and uS), each separated into
- and y-components (uix and uiy) using

P
x (t, x, y) = ∂ϕ(t, r, 	)

∂r
cos 	 − 1

r

∂ϕ(t, r, 	)
∂	

sin 	, (7)

P
y(t, x, y) = ∂ϕ(t, r, 	)

∂r
sin 	 + 1

r

∂ϕ(t, r, 	)
∂	

cos 	, (8)

S
x(t, x, y) = 1

r

∂ (t, r, 	)
∂	

sin 	 − ∂ (t, r, 	)
∂r

cos 	, (9)

S
y(t, x, y) = 1

r

∂ (t, r, 	)
∂	

cos 	 + ∂ (t, r, 	)
∂r

sin 	. (10)

. Results

In Fig. 6 the synthetic seismograms at the receiver location
ndicated in Fig. 1a are plotted as gray lines for all different numer-
cal methods and for different spatial and temporal resolutions.
n Table 2 numerical parameters of all performed simulations are
iven. The black lines in Fig. 6 are calculated using the analytical
olution of Liu et al. (2000). In y-direction (Fig. 6a) the first event
ecorded is the incident plane P-wave. Later events are the scattered
-wave and the scattered S-wave (P-to-S-converted) that are over-
apping and, therefore, not distinguishable. In x-direction (Fig. 6b)
he incident wave is not present and only the scattered wave field is
ecorded. The lowest-resolution numerical simulations differ sig-
ificantly from the analytical solution, especially towards the end
f the seismogram. However, the majority of the simulations fit the
nalytical solution very well. This applies for the shape of the seis-
ogram, amplitudes and arrival times. The seismograms in Fig. 6

re used to calculate the L2 error norm in both x- and y-directions,

2x,y =
√∑nt

i=1(unum
x,y (ti) − uana

x,y (ti))
2∑nt (uana

x,y (ti))
2

, (11)

i=1

here unum
i

is the particle displacement obtained from a numerical
imulation and uana

i
is the particle displacement obtained analyti-

ally. Fig. 7 compares the L2 error norm for displacements in x- and
-direction for the different numerical methods. The errors in the

. Gray lines show seismograms obtained from numerical simulations for all different
article displacement in y-direction and (b) x-direction. Note the different scales in
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Table 2
Numerical parameters for all simulations performed in this study

Method in space

FDM FEM FEM FEM

expl. FDMa impl. FDMa expl. FDMa impl. FEMa

# Nodes 1,490,841 216,705 216,705 287,725
# Nodes inside inclusion 20,108 21,392 21,392 4144
�t (×10−5 s) 7.04 23.7 11.9 2.96 0.64 23.7 11.9 2.96

# Nodes 1,002,001 112,409 112,409 128,369
# Nodes inside inclusion 15,380 5516 5516 3528
�t (×10−5 s) 8.05 23.7 11.9 2.96 1.43 23.7 11.9 2.96

# Nodes 549,081 40,049 40,049 72,821
# Nodes inside inclusion 7860 826 826 3528
�t (×10−5 s) 11.3 23.7 11.9 2.96 5.38 23.7 11.9 2.96

# Nodes 212,521 10,349 10,349 33,405
# Nodes inside inclusion 1976 210 210 3528
�t (×10−5 s) 22.5 23.7 11.9 2.96 13.8 23.7 11.9 2.96

# Nodes 40,401 13,249
# Nodes inside inclusion 80 3528
�t (×10−5 s) 110 23.7 11.9 2.96

# Nodes 9089
# Nodes inside inclusion 3528
�t (×10−5 s) 23.7 11.9 2.96

# Nodes 7005
# Nodes inside inclusion 3528
�t (×10−5 s) 23.7 11.9 2.96

# clusio
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Nodes is the total number of numerical nodes in the domain, # Nodes inside in
ncrement in 10−5 s, expl. refers to explicit time integration and impl. refers to im
tability criterion. The three different implicit time increments are chosen freely.

a Method in time.

wo directions follow approximately a linear trend with increas-
ng resolution whereas the error for displacement in y-direction
s consistently smaller than in x-direction. This is already visible
n Fig. 6. For further analysis only the y-component of the dis-

lacement (Fig. 6a) is considered. Due to the linear trend of the
rrors in the two directions (Fig. 7), results of the error analysis for
isplacements in x-direction are comparable.

In the following sections the accuracy of the different numerical
ethods is analyzed as a function of spatial and temporal resolu-

ig. 7. L2 error norm for particle displacement in y-direction plotted versus L2 error
orm for particle displacement in x-direction. Different lines correspond to different
umerical methods and/or different implicit time increments. First abbreviations in
he legend before the comma (FDM or FEM) stands for the spatial discretization

ethod, second abbreviation stands for the time discretization whereas expl. refers
o explicit time integration and impl. refers to implicit time integration. Implicit time
ncrements for both temporal FDM and temporal FEM are: 1, �t = 2.37 × 10−4 s; 2,

t = 1.19 × 10−4 s; 3,�t = 2.96 × 10−5 s.
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n is the number of numerical nodes that belong to the inclusion, �t is the time
time integration. Explicit time increments are calculated using the von Neumann

ion (Table 2). For explicit methods spatial and temporal resolutions
re not independent from each other because the time increment
s calculated with the von Neumann stability criterion, which is a
unction of the spatial resolution. Therefore, effects of spatial and
emporal resolutions cannot be separated completely for explicit

ethods.

.1. Effect of spatial resolution

With each numerical method a series of simulations with chang-
ng spatial resolution was performed (Table 2). Fig. 8 shows the L2
rror norm for the particle displacement in y-direction as a func-
ion of the number of degrees of freedom for the different methods.
ig. 8a considers the total number of degrees of freedom in the
hole numerical domain and Fig. 8b considers only the degrees of

reedom inside the inclusion. All methods become more accurate
ith increasing spatial resolution. However, for the same number of
egrees of freedom (Fig. 8a) the spatial FEM is more than one order
f magnitude more accurate than the spatial FDM. Also, the method
sing the FEM in space and the implicit FDM in time clearly shows
n effect of the chosen time increment. Larger time increments give
ess accurate results and the difference in accuracy increases with
ncreasing spatial resolution. At the same time the method using
he FEM in both space and time does not show this effect and the
ines for the two different time increments lie virtually on top of
ach other.

The results change considerably when only the number of
egrees of freedom inside the heterogeneity (Fig. 8b) is considered.

ethods using the FEM in space are still more accurate than the

DM in space but the difference is much smaller. This is largely
ue to the fact that the numerical FEM-mesh can vary significantly
hile the spatial variation of the FDM-mesh is limited. The method
sing the FEM in space and the FDM in time makes use of this advan-
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ig. 8. L2 error norm for particle displacement in y-direction plotted versus (a) tot
reedom inside the circular inclusion. The legend is valid for both subfigures and is

age. The spatial resolution is increased inside and at the boundary
f the inclusion while the resolution outside the inclusion is con-
iderably lower. The meshgenerator used by the method using the
EM in space and the FEM in time keeps the resolution inside and at
he boundary of the inclusion constant while the resolution in the
urrounding media is increased (Table 2). This leads to the almost
ertical line in Fig. 8b.

Fig. 9 is similar to Fig. 8 but uses as a measure for spatial res-
lution the number of numerical nodes per dominant wavelength
157.1 m). Because the spatial resolution can vary within the numer-
cal domain (for both the spatial FEM and the spatial FDM) two

easures are considered. Fig. 9a considers the minimal and Fig. 9b
onsiders the maximal distance between two neighboring nodal
oints within the whole numerical domain. The minimal distance
etween two nodal points (i.e. highest spatial resolution) is on the
oundary of the inclusion for all methods. Therefore, Figs. 8b and 9a

ook very similar. However, the line representing the spatial FDM
s shifted even more to the left relative to the lines representing
patial FEM compared to Fig. 8a and b. Again, this is an effect of
he varying grid spacing of the spatial FEM-mesh. Also the discrep-

ncy between Fig. 9a and b can be explained with the unstructured
EM-mesh. While the grid spacing for the spatial FDM does not vary
ignificantly, the FEM-mesh can have larger spacing away from the
nclusion. This shifts all lines representing the spatial FEM to the
eft relative to the spatial FDM in Fig. 9b compared to Fig. 9a.

i
i
r
c
n

ig. 9. L2 error norm for particle displacement in y-direction plotted versus number of
ominant wavelength the shortest distance between two nodes in the whole numerical
umerical domain is used. The legend is valid for both subfigures and is explained in deta
ber of degrees of freedom in the numerical domain and (b) number of degrees of
ned in detail in Fig. 7.

.2. Effect of temporal resolution

While for explicit schemes the time increment decreases with
ncreasing spatial resolution according to the von Neumann sta-
ility criterion, no such criterion exists for implicit schemes and
he time increment can be chosen freely. To test the effect of tem-
oral resolution implicit simulations were performed with three
ifferent time increments (Table 2). Fig. 10 shows the L2 error
orm for the particle displacement in y-direction as a function of
he time increment used in the simulations. Considering only the
wo explicit schemes, Fig. 10 resembles Fig. 9a. The difference is a
esult of the two slightly different stability criteria for the explicit
ime increments that were applied to the spatial FDM and spatial
EM. The spatial FEM results in a smaller explicit time increment
ecause the numerical mesh can be locally very fine whereas the
DM-mesh is more uniform. However, the two explicit schemes fol-
ow a common trend of increasing accuracy with decreasing time
ncrement.

For implicit schemes the different lines in Fig. 10 represent
imulations with the same spatial resolution but different time

ncrements. For low spatial resolution there is no effect of the time
ncrement. This means that the accuracy is limited by the spatial
esolution. Thus, the time increment of the coupled space-time FEM
ould be even enlarged. However, for comparison reasons, this was
ot done in the present investigation, but was studied in detail in

numerical nodes per dominant wavelength. To calculate the number of nodes per
domain is used in (a). In (b) the longest distance between two nodes in the whole
il in Fig. 7.
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pplied time increment. Abbreviations in the legend are explained in detail in Fig. 7.
or implicit schemes the different lines represent the same spatial resolution but
ifferent time increments.

hen et al. (2008). For higher spatial resolution the method using
he FEM in space and the FDM in time clearly shows higher accuracy
or smaller time increments. The accuracy for a given spatial reso-
ution is limited by the applied time increments. The same accuracy
an be achieved by using either a smaller time increment or a higher
patial resolution. At the same time the method using the FEM in
oth space and time is unaffected by the changing time increment
or all spatial resolutions. The accuracy is limited by the spatial
esolution.

.3. Effect of computation time

The two numerical algorithms using the FDM in time are imple-
ented in MATLAB while the algorithm using the FEM in time is

mplemented in C. Also, the different simulations were not all per-
ormed on the same computer. Therefore, it is difficult to compare
ll the simulations. However, Fig. 11 shows the L2 error norm for the
article displacement in y-direction as a function of computation

ime per time increment (Fig. 11a) and as a function of total compu-
ation time (Fig. 11b) for all performed simulations. For increasing
esolution (i.e. higher accuracy) implicit calculations in C perform
aster than in MATLAB.

o
F
t
O

ig. 11. L2 error norm for particle displacement in y-direction plotted versus (a) computat
or the whole simulation. The legend is valid for both subfigures and is explained in detai
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To achieve a given accuracy the method using the FEM in space
nd the explicit FDM in time performs fastest. This is especially
rue when only one time increment is considered (Fig. 11a). Then
he method using the FEM in space and the explicit FDM in time
erforms more than an order of magnitude faster than all other
ethods for a given accuracy. The unstructured FEM-mesh allows

aving a high spatial resolution at the inclusion boundary without
he need of a high resolution away from the inclusion. This leads to
ccurate solutions with a much smaller number of total grid points
ompared to the spatial FDM and therefore also to faster perfor-
ance. However, high resolution at the inclusion boundary also

esults in a small explicit time increment (von Neumann stability
riterion) and therefore to a high number of time steps. Consider-
ng total computation time (Fig. 11b) the difference between the

ethod using the FEM in space and the explicit FDM in time and
ll other methods is therefore smaller. However, it still performs
factor two (or more) faster than the other methods for a given

ccuracy.
Considering only one time increment (Fig. 11a) the implicit

ethods using the FEM in space perform as fast as the method using
he FDM in both space and time, although this is an explicit method.
he slower performance that is expected with implicit methods is
ompensated by the fact that the unstructured FEM-mesh needs
uch less numerical nodes for the same accuracy compared to spa-

ial FDM (Fig. 8a). Due to the different numbers of time steps for
he different methods the lines representing the different methods
n Fig. 11b are much further apart from each other compared to
ig. 11a.

. Discussion

The spatial FEM generally gives better results compared to the
patial FDM for the presented geometrical setup. The unstructured
EM-mesh allows a very accurate spatial approximation of the cir-
ular inclusion, or any other heterogeneity, without introducing
staircase-like material boundary. In addition, the unstructured

EM-mesh allows higher spatial resolution where it is needed with-
ut the need of high spatial resolution in other regions of the
omain. This reduces the required number of grid points com-
ared to the rectangular FDM-meshes. A desired accuracy can also
f numerical grid points is needed. This advantage of the spatial
EM will be even more important in three-dimensional simula-
ions where the number of grid points increases more rapidly.
ther methods, such as the finite volume method, are also able

ion time (CPU time) per time increment and (b) total computation time (CPU time)
l in Fig. 7.
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o handle unstructured meshes and are expected to show similar
ccuracies as the spatial FEM. Taking the aspect of computation
ime into account, the best method shown in this study is the FEM
n space and the explicit FDM in time. It has both the advantage
f the unstructured mesh and of the fast explicit time integration.
imulations are both accurate and fast.

From a programming point of view the spatial FDM is the sim-
lest numerical method and is also commonly used for numerical
ave propagation simulations. Therefore, it is worth to evaluate

he desired accuracy and calculation time for a particular prob-
em. For many applications the spatial FDM gives accurate enough
esults and/or the resolution can be set high enough to provide the
esired accuracy. A further advantage is that no third-party mesh
enerator is necessary for the spatial FDM. Therefore, the numerical
esh is under full control. The spatial FEM with the FDM in time

s slightly more complex to implement but leads to more accurate
esults. The space–time FEM algorithm is more complex and is not
trivial extension of the spatial FEM with the FDM in time. For

iscontinuous elements in time used here each spatial nodal point
equires twice as many degrees of freedom compared to the spatial
EM with the FDM in time. Interpolation functions in time have to
e independent of interpolation functions in space and integration
chemes have to be varied. The space–time FEM is compared quan-
itatively and qualitatively with the spatial FEM combined with the
DM in time by Chen et al. (2006, 2008). A big advantage is the fact
hat it is straight forward to implement interpolation functions that
re higher order in time (e.g. second or fourth order) that result in
higher convergence rate. In the ideal case interpolation functions

n time adapt to the actual problem solved.
The analytical solution provided by Liu et al. (2000) is expressed

s integrals and sums (Eqs. (5) and (6)) that need to be calcu-
ated numerically. This results in a relatively lengthy numerical
lgorithm. It has to be made sure that the number of sum-
ands and the finite boundaries for integration and summation

re chosen in a way that the solution converges. The seismogram
displacement–time–signal) for a synthetic receiver can be calcu-
ated with reasonable computation time because the number of
ime increments used is not too big. A snapshot as in Fig. 1 for a high
patial resolution would need a large computational effort. Also, the
oefficients of the analytical solution are so complicated and long
hat it is difficult to gain good physical insight in the scattering
rocess from the provided formulas.

Generally, the comparison between the different methods is not
traight forward. In explicit schemes spatial resolution and the time
ncrement are tightly coupled through the von Neumann stability
riterion. Therefore, the effect of the two on the accuracy of the
umerical solution cannot easily be separated. The spatial FDM and
he spatial FEM use a completely different numerical mesh. There-
ore, it is also difficult to compare the spatial resolution of the two

ethods and several attributes describing the spatial resolution
ave to be considered for comparison.

. Conclusions

The analytical solution for the simple scattering problem studied
ere is in fact expressed as infinite integrals and sums. It is therefore
ot a pure analytical solution and a numerical algorithm is required
o calculate the values of the analytical solution. For more geometri-
ally complicated scattering problems numerical methods become

ssential.

The FDM and the FEM are two different numerical methods
o spatially discretize the geometry of the scattering problem.
oth methods have advantages and disadvantages but the main
dvantage of the FEM is the application of unstructured numeri-

F

H

H
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al meshes while the FDM needs rectangular meshes. Therefore,
he FEM provides the same numerical accuracy as the FDM but
equires significantly less numerical grid points. This is a result
f the unstructured mesh that allows high resolution where it is
eeded with lower resolution elsewhere in the model domain.
lso, the boundaries of heterogeneities can be better resolved with
nstructured meshes and the FEM does not require interpola-
ion of material properties which is required for the FDM using a
elocity–stress formulation on a staggered grid. On the other hand,
n advantage of the FDM is the considerably simpler numerical
mplementation.

The results show that the numerical accuracy does not improve
y using implicit time integration schemes (FDM or FEM) instead
f explicit ones (FDM). Therefore, for the presented geometrical
etup of a circular inclusion inside a homogeneous medium, the
umerical algorithm consisting of the FEM in space combined with
he explicit FDM in time is the best choice which provides accurate
esults and performs fastest.
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