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First results for borehole data
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Basic research idea

Introduction
Flow of linear viscous (Newtonian) materials leads to perfectly parabolic flow structures; So far, we analyzed two borehole curves (Fig. 7 & 8, Table 1). Considering the entire

The creep behavior (i.e., rheology) of rockglaciers may deviate from the well-known flow-law for pure ice. Here we aim at constraining the non-linear viscous flow law governing rockglacier flow of non-linear viscous materials leads to curved, but not parabolic flow structures. borehole, the power-law fit performs significantly better (R°>0.92) than the

creep based on geomorphological criteria and borehole deformation data. As a case study we use the Murtél rockglacier (upper Engadin valley, SE Switzerland) for which high-resolution digital Ideally, the power-law exponent of the curved flow structures (m) is one larger than quadratic fit (R°<0.75) and we find power-law exponents of 5.14>m>7.30.

elevation models (DEM), time-lapse borehole deformation data, and geophysical soundings exist that reveal the exterior and interior architecture and dynamics of the landform. the power-law stress exponent of the non-linear rheological flow law (n) (Table 1). Considering only the middle section of the borehole, all different fitting curves perform
equally well (R“>0.96) and we find power-low exponent close to m=2.

Rheological flow law Geometry of furrow- Horizontal borehole

Rockglaciers often feature a prominent furrow-and-ridge topography. For the Murtél rockglacier, Frehner et al. (2015) reproduced the wavelength, amplitude, and distribution of the (Glen's (1952) flow law)  and-ridge morphology ~ deformation with depth

furrow-and-ridge morphology using a linear viscous (Newtonian) flow model. Arenson et al. (2002) presented borehole deformation data, which highlight the basal shear zone at about 30 m

Curve [tfing of borehole deformation (05.03.1992) Curve [tfing of borehole deformation (25.08.1995)
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Linear viscous models result in perfectly parabolic flow geometries; non-linear creep leads to localized deformation at the sides and bottom of the rockglacier while the deformation in the é: strain rate, Uy: displacement in flow direction, n: power-law exponent of rheological flow o 10p 22 With }Iﬂd value o }@d Jalue .
interior and top are less intense. In other words, non-linear creep results in non-parabolic flow geometries. By comparing the measured curved 3D geometry with theoretical 3D flow geometries, law, m: power-law exponent of flow structure, A, B, C: material or geometrical constants. -~ ?ttgv'thout attopf— ?tt (;Nlthout at top =
we determine the most adequate flow-law that fits the natural deformation geometry best. 815 |—full data — full data b
In principle, geometrical analysis of flow structures on/within a rockglacier should S || e — middle g
allow determinining the power-law exponent (n) that governs the viscous flow. g0 T
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