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Introduction

The creep behavior (i.e., rheology) of rockglaciers may deviate from the well-known �ow-law for pure ice. Here we aim at constraining the non-linear viscous �ow law governing rockglacier 
creep based on geomorphological criteria and borehole deformation data. As a case study we use the Murtèl rockglacier (upper Engadin valley, SE Switzerland) for which high-resolution digital 
elevation models (DEM), time-lapse borehole deformation data, and geophysical soundings exist that reveal the exterior and interior architecture and dynamics of the landform.

Rockglaciers often feature a prominent furrow-and-ridge topography. For the Murtèl rockglacier, Frehner et al. (2015) reproduced the wavelength, amplitude, and distribution of the 
furrow-and-ridge morphology using a linear viscous (Newtonian) �ow model. Arenson et al. (2002) presented borehole deformation data, which highlight the basal shear zone at about 30 m 
depth and a curved deformation pro�le above the shear zone. Similarly, the furrow-and-ridge morphology also exhibits a curved geometry in map view. Hence, the surface morphology and the 
borehole deformation data together describe a curved 3D geometry, which is close to, but not quite parabolic.

Linear viscous models result in perfectly parabolic �ow geometries; non-linear creep leads to localized deformation at the sides and bottom of the rockglacier while the deformation in the 
interior and top are less intense. In other words, non-linear creep results in non-parabolic �ow geometries. By comparing the measured curved 3D geometry with theoretical 3D �ow geometries, 
we determine the most adequate �ow-law that �ts the natural deformation geometry best.

 Fig. 2: High-
resolution (8 cm) DEM
and color information

of the Murtèl rockglacier 
(courtesy of J. Müller).

How to view the 3D images:
Grab a pair of red-blue 3D glasses. Important: Relax 
your eyes; e.g. focus on the furthest peaks in Fig. 1.

Using the curved furrow-and-ridge morphology in map view (Fig. 5) and the curved 
borehole deformation data in a vertical view (Fig. 6), we apply the following work�ow:
 Digitize the curved �ow structures, both in map view and in in vertical direction.
 Find the power-law function that best �ts the curved geometry. Various 

assumptions and  boundary conditions may be applied:
 Part that is considered: entire structure, reject few meters on each side in map 

view, reject the top 5 m and/or bottom few meters (shear zone) in borehole data
 Fixed value at the end of the structure
 Fixed gradient at the top of the borehole

 From the best-�tting geometrical power-law exponent (m), infer the power-law 
stress exponent of the rheological �ow law (n).

The Murtèl rockglacier

Motivation: Our previous work

Basic research idea

Used data
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 Fig. 1: Regional overview 
(Google Earth) of Piz Corvatsch 
and the Murtèl cirque.

 Fig. 3: 2D linear viscous �nite-element model  
based on Murtèl rockglacier (h=3 m, R=21).
 Fig. 4: The simulation reproduces Murtèl’s 
furrow-and-ridge morphology (L≈20 m) and 
the upper part of the borehole deformation.

 Fig. 5: Di�erential elevation calculated from a 1 m resolution 
digital elevation model (Frehner et al., 2015).

 Fig. 6: Borehole deforma-
tion (Arenson et al., 2002).
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In Frehner et al. (2015), we applied the buckle folding theory for 
linear viscous (Newtonian) materials to explain the 
furrow-and-ridge morphology on the Murtèl rockglacier.

Buckle folding theory in a nutshell
Buckle folding is the mechanical response of layered viscous 
materials to layer-parallel compression. The wavelength (L) 
depends on the viscosity ratio (R) between the sti� (folded) 
and soft layer and on the thickness of the sti� layer (h).

Based on the spacing of the furrows and ridges (L≈20 m) we 
determined the e�ective (Newtonian) viscosity ratio between 
the upper layer (h=3 m) and the main rockglacier body as R=21.

Flow of linear viscous (Newtonian) materials leads to perfectly parabolic �ow structures; 
�ow of non-linear viscous materials leads to curved, but not parabolic �ow structures. 
Ideally, the power-law exponent of the curved �ow structures (m) is one larger than 
the power-law stress exponent of the non-linear rheological �ow law (n) (Table 1).

 Rheological �ow law Geometry of furrow- Horizontal borehole 
 (Glen’s (1952) �ow law) and-ridge morphology deformation with depth
General:
Newtonian:

 Table 1: Relationship between rheological �ow law and ideal �ow geometries.  : stress,
  : strain rate, ux: displacement in �ow direction, n: power-law exponent of rheological �ow 
law, m: power-law exponent of �ow structure, A, B, C: material or geometrical constants.

In principle, geometrical analysis of �ow structures on/within a rockglacier should 
allow determinining the power-law exponent (n) that governs the viscous �ow.
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Work�ow

First results for borehole data

Discussion, Conclusions & Outlook

So far, we analyzed two borehole curves (Fig. 7 & 8, Table 1). Considering the entire 
borehole, the power-law �t performs signi�cantly better (R2>0.92) than the 
quadratic �t  (R2<0.75) and we �nd power-law exponents of 5.14>m>7.30.
Considering only the middle section of the borehole, all di�erent �tting curves perform 
equally well (R2>0.96) and we �nd power-low exponent close to m=2.

Preliminary results suggest that the �ow 
law governing deformation of  the Murtèl 
rockglacier has a power-law stress 
exponent (n) between 4 and 6 (i.e., m–1). 
However, the rockglaicer may be divided 
into a lower part with strong strain 
localization (shear zone) and the main 
rockglacier body with an almost linear 
(n=1) rheological �ow law.

Outlook
Our work continues during the BSc Thesis 
of D. Amschwand. Next, we will analyze 
the furrow-and-ridge morphology in a 
similar way as the borehole deformation 
data. Subsequently, we will feed the 
best-�tting rheological �ow law  into a 3D 
�nite-element model (Fig. 9) to study the 
internal dynamics (stresses & strain rates) 
of rockglaicer �ow. Expect new results 
at ICOP (20–24 June 2016, Postdam).

 Fig. 7 &  Fig. 8: Borehole 
deformation curves (Arenson et al., 
2002) and �tting functions using 
di�erent conditions.

 Table 1: Curve �tting details. 
Best �ts are obtained using power- 
law functions and �tting only the 
middle section of the borehole.

 Fig. 9: Di�erent  views of  3D 
feasibility simulation. A DEM

(Fig. 2) de�nes the model
topography. The base

is equal to the 2D
model (Fig. 3).
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m= 6.06 7.30 2.19 2.10
R2= 0.71 0.58 0.38 0.98 0.98 0.98 0.94 0.96 0.98 0.98
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