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Abstract
Characteristic low frequency seismic signals
have been observed in areas where
hydrocarbon reservoirs are present. A
possible interpretation is the excitation of
hydrocarbon related resonances. Basic
models of an oscillating liquid filled porous
medium are investigated. Synthetic spectra
of the ab initio Navier-Stokes equations and
of basic linear and non-linear one-
dimensional oscillators show characteristic
features of measured spectra when oceanic
background waves around 0.1 - 0.2Hz are
assumed to be the external driving force.

Introduction
Hydrocarbon Microtremor Analysis
(HyMAS) [1,2] is an innovative seismic
spectroscopy technology identifying the
hydrocarbon content of geological structures
by analyzing low frequency background
wave signals. Hydrocarbon indicating
information is extracted from spectral
modifications of naturally occurring
background waves in the 0.1 – 20 Hz range
interacting with hydrocarbon bearing porous
structures. Similar observations have been
made at more than 15 sites worldwide

[3,4,5,6]. From recent land surveys in
Austria and Brazil [1,7] typical HyMAS
data of a weak and a strong signal indicating
low and high hydrocarbon potential are
shown in Fig. 1.

A general approach towards an explanation
of such behaviour is the phenomenological
interpretation as a driven linear or non-linear
oscillator [8].
The straight forward approach to describe
such observations is the general equation for
a one dimensional nonlinear oscillator
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with space variable x, frictional damping
term b/m, resonance frequency ω0, driving
acceleration amplitude F/m  and driving
frequency Ω , which already leads to a
remarkably good fit as displayed in Fig. 1.
The input excitation F/m at the ocean wave
peak frequency of Ω =2π⋅0.22 Hz generates
a second harmonic at about 0.44 Hz. The
resonance frequency, which was
intentionally set to ω0 = 2π⋅2.6 Hz, has been
widened by the creation of sum- and
difference frequencies between Ω   and ω0
the damping term b/m.



Figure 1: Spectrum (calculated) produced by a
driven nonlinear one-dimensional oscillator
which compares well with the measured
spectrum of the vertical ground motion velocity
component.  For comparison the maximum
values of the spectra are superimposed and set to
a value close to one. Parameters for the
calculations according to Eq. 1 are : b/m =2.0 s-1,
ω0 = 2·π·2.6 Hz, F/m = 0.8 m s-2, Ω = 2·π·0.22
Hz, A/ω0

2 = 1.2·10 4 s-2, B/ω0
2 = 4·10 5 s-2 m-1.

The insert shows the measured signal after
suitable signal to noise ratio improving data
processing. The trace on top indicates low and
the trace at the bottom high hydrocarbon
potential. The measurement locations were about
2 km apart. The peak at about 4.5 Hz is due to a
nearby artificial noise source.
Note that the frequency separation of the clearly
visible fine structure wiggles corresponds to the
frequency of the oceanic wave peak which is
likely to be caused by non-linear interactions.
Also the higher harmonics of the driving
frequency are visible in the measured spectrum.

In order to better understand the meaning of
such formal results and their limits, the
oscillator parameters and the conditions of
the natural environment of a hydrocarbon
reservoir have to be related. Two basic poro-
mechanical models often used in literature
serve as examples [9]. For the linear model
(Fig. 2), a bi-conical pore geometry (Fig. 3)
is used while a spherical pore shape (Fig.
12) represents the nonlinear case.      

Linear one dimensional oscillator model
The bi-conical pore geometry has the
advantage of providing a linear spring

constant for the restoring force which is
independent of the dislocation of the pore
fill along the z-direction. In equilibrium, the
capillary forces which are proportional to
the length of the oil/rock contact line
(ORCL) balance each other.

Figure 2 : General description of a driven linear
one-dimensional oscillator along the x-direction
with its second order differential equation and
resonance response function.

For small displacements of the liquid, the
lengths of both ORCL change in such a way
that the related capillary forces 

� 

Fz = F+z +F−z
always add up to a restoring force which
enables oscillations.



Figure 3: Schematic representation of a simple
bi-conical pore geometry which enables low
frequency oscillations of the contained liquid
along the z-direction. The oil/rock contact line
(ORCL) or triple phase line where capillary
forces occur is formed between the oil and water
phases and the rock material .  a) liquid in
equilibrium: the capillary forces 

� 

F+z  in positive
and 

� 

F−z  in negative z-direction balance each
other; b) Situation after a small displacement of
the liquid in the positive z-direction: 

� 

F+z  has
decreased and 

� 

F−z   has increased compared to
the equilibrium. The resulting restoring force
drives the liquid back along the negative z-
direction towards its equilibrium position; c)
same as b) with dislocation in the negative z-
direction.

Neglecting gravity, which would mainly
shift the equilibrium position, and assuming
nearly filled pores, an oscillation frequency
according to the one-dimensional oscillator
model can be estimated.

The spring constant
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f = ∂Fz
∂z
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h

(2)

and mass
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m = 2
3
r 2π h ρL (3)

lead to the resonance frequency
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= 1
2π h
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(4)

The observed value of ν  = 3 Hz is
compatible with realistic values of the
relevant parameters given in Tab. 1.

pore radius r 1·10-3 m
half distance
between pore throats

h 5·10-3 m

surface tension of
oil

γ 10-3 N m-1

density of oil ρL 8·102 kg m-3

viscosity µ 6·10-4 kg s-1 m-1

low viscosity µ 6·10-5 kg s-1 m-1

resonance frequency ω0 3·(2·π) Hz

Table 1: common parameter values

Fig. 4 shows, as an example, how the sharp-
peaked spectrum of a single oscillator
approaches the wider observed shape as a
function of the width "sigma" of the
assumed log-normal parameter distribution.

Figure 4: Numerical simulation of the
superimposed spectrum of 1000 linear harmonic
oscillators for three different parameter
distributions: a) all oscillators with normalized
resonance frequency at ω0=1 and damping b/m =
0.1 ; b) both resonance frequency and damping



vary according to a log-normal distribution with
sigma = 2.84; c) both resonance frequency and
damping vary according to a broad log-normal
distribution with sigma = 3.47.

Navier-Stokes equations
In order to verify the approximations used in
the one-dimensional oscillator model, the
Navier Stokes equations which are mainly
based on fundamental ab initio concepts
such as conservation laws, constitutive
equations and boundary conditions for the
liquid filled bi-conical pore are numerically
solved.
Code
TransAT [10] is a finite-volume multi-
physic code solving the multi-fluid Navier-
Stokes equations. The code uses multi-
block, structured meshes along with a
message-passing parallel algorithm. The
grid arrangement is collocated and can
handle general curvilinear grids. Multiphase
flows are computed using the particle
tracking approach, or interface tracking
techniques. The flow is modeled as one fluid
having variable material properties
according to a phase indicator function
which distinguishes the gas phase regions
from the liquid phase. Both the Level-Set
and the Volume-of-Fluid Interface Tracking
Methods (ITM) can be employed in the code
to track evolving interfaces.
Transport Equations
The incompressible heat and fluid flow
equations expressed within the single-fluid
formalism take the following form

� 

∇⋅ u = 0 (5)

� 

∂ t (ρ ⋅ u) + ∇⋅ (ρ⋅ u ⋅ u −σ ) = Fs + Fb + Ftl (6)

where 

� 

ρ  is the density of the liquid pore
fill, 

� 

u  is the velocity vector of the pore fill
and the RHS terms in the momentum
equation (Eq. 6) represent the surface
tension expressed by Eq. 8 below, body
forces and the triple-line wall contribution
respectively and 

� 

σ = τ − p ⋅ I  is the
Newtonian viscous stress tensor with its

share component 

� 

τw  parallel to the wall and
its pressure induced component 

� 

p ⋅ I  (

� 

p :
pressure, 

� 

I : identity matrix).  Isothermal
conditions are assumed.

The Level Set Method
In the LS method, the interface between
immiscible fluids is represented by a
continuous function 

� 

ϕ , representing the
distance to the interface which is positive on
one side and negative on the other. The two
fluids can now be identified by the location
of the interface representing the zero level.
The LS evolution equation is

� 

∂ tϕ + u ⋅∇ ⋅ϕ = 0 (7)

Material properties such as the density, the
viscosity, and the thermal conductivity are
updated locally based on 

� 

ϕ  and smoothed
across the interface using a smooth
Heaviside function. The fact that 

� 

ϕ  is a
continuous function across the interface
helps to determine the normal vector 

� 

n  to
the interface, and thereby the surface
curvature 

� 

κ  required for the determination
of the surface tension,

� 

Fs = γ κ δs n (8)

where 

� 

γ  is the surface tension of the
fluid and 

� 

δs is the Dirac delta function
located at the interface.

Simulation setup and results
The bi-conical pore is setup as an
axisymmetric body of revolution as shown
in Fig. 5. The pore is initialised with oil in
the center and water at the edges. A
sinusoidal forcing is applied to the flow
domain of given amplitude (0.05 mm) and
frequency. The simulation is run for a fixed
number of cycles and the motion of the
center-of-mass of the oil is calculated. By
comparing the amplitude and phase of the
oscillation with the imposed oscillation, the
amplitude and phase response of the system
is computed.



Two pores with center diameter of 3mm and
1mm were simulated for a range of
frequencies (0.5 – 10 Hz). Further
refinement in the frequencies was performed
near the observed resonance frequency for
the 3mm diameter case. Fig. 6 shows the
amplitude and phase response for the 3 mm
diameter pore. Resonance is observed at
approximately 1 Hz for a viscosity of

� 

µ =6·10-4 kg s-1 m-1. For a lower viscosity
(

� 

µ =6·10-5 kg s-1 m-1)  t h e  r e s o n a n c e
frequency is shifted to approximately 1.7
Hz. As expected the phase angle undergoes
a 90 degree shift at resonance. For the 1mm
pore,  resonance is  observed at
approximately 4.6 Hz (Fig. 7).

Figure 5: Bi-conical pore geometry with forces
acting on the oil drop. For the calculations two
pore shapes with of r=1 mm, h=1.5 mm and r=3
mm, h=4.5 mm were used. The external force
was adjusted for a non resonant displacement of
A=2·10-6 m for the 1 mm pore diameter and of
A=2·10-5 m for the 3 mm pore diameter.

Figure 6: Amplitude A (mm) and phase
response 

� 

Φ  (rad) for 3mm pore diameter.
Viscosity 

� 

µ =6·10-4 kg s-1 m-1 and 

� 

µ =6·10-5 kg s-

1 m-1

Figure 7: Amplitude A (mm) and phase
response 

� 

Φ  (rad) 1mm pore diameter. 

� 

µ =6·10-4

kg s-1 m-1

Forces acting on the oil drop

The different forces acting on the oil drop at
two different frequencies (1 Hz and 3 Hz)
for the 3 mm pores are shown in Figs. 8(a)
and (b). The forces acting on the oil drop are
schematically shown in Fig. 5, namely the
wall pressure and viscous shear, the inertial
force, the triple line force at the ORCL, the
surface tension force, and the imposed
sinusoidal oscillation. Different forces have
different amplitude and phase relationships
to the imposed oscillation. The wall pressure
is typically in phase with the imposed
oscillation, whereas the viscous shear lags
the imposed oscillation.

The variation of the magnitudes of the
different forces with respect to the imposed
frequency normalised by the imposed
oscillation magnitude is shown in Fig. 9. It
can be observed that the forces generally
reduce with increasing frequency. They also
show a small increase/decrease in amplitude
near  the  resonance  f requency
(approximately 1 Hz).



Figure 8(a): Forces acting at 1 Hz on oil drop,
(b): Forces acting at 3 Hz on oil drop. The little
bursts are numerical oscillations due to the
contact line moving from one finite volume to
another. Special treatment is done only on one
control volume for the dynamic contact line
model.

Figure 9: Variation of forces with respect to
frequency. The forces add up to one considering
that the triple line force is a negative contribution
and the surface tension force is an internal force
of which the resulting net force is represented by
the triple line force.

Comparison of calculated pore oscillation
behaviour to a linear harmonic oscillator

Fig. 10 shows the frequency dependence of
amplitudes and phases calculated by the
numerical Navier-Stokes model (NSM) and
the linear harmonic oscillator model
(LHOM)  for 3 cases : pore of 1mm radius
and 3mm radius with two different
viscosities. For each case two fits are
indicated, one for good agreement in the
maximum amplitude region and one for
good agreement at frequencies far below and
above resonance. The oscillator parameters
for each case and fit are listed in Tab. 2.

The expressions for the response of a linear
harmonic oscillator are
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A(ω) =
F0
m

1

(ω0
2 −ω 2) + ( b

m
)2ω 2 (9)

for the amplitude and

� 

Φ = −arctan(

b
m
ω

ω0
2 −ω 2 )

(10)

for the phase with excitation acceleration 

� 

F0
m

,

resonance frequency 

� 

ω0 and damping 

� 

b
m

.

Figure 10 : Amplitudes and phases calculated by
the Navier-Stokes model (NSM) and the linear
harmonic oscillator model (LHOM) for a pore of
1mm radius (left) and 3mm radius (middle :
same viscosity as 1mm pore; right: lower
viscosity). Open circles : calculated by NSM; fit
A dashed line: LHOM fitted for good agreement
around the resonance frequency;  fit B dashed
line: LHOM fitted for good agreement at the
wings; solid line: average of fit A and fit B.



1mm pore radius 3mm pore radius 3mm pore radius
low viscosity

fit B fit A average fit B fit A average fit B fit A average

excitation
[10-2 m s-2]

3 1.8 2.4 12 1.7 6.85 5.5 2.5 4.0

resonance
frequency

[Hz]

5.5 4.6 5.05 1.7 1.1 1.4 1.85 1.75 1.8

damping
[s-1]

2.0 1.2 1.6 1.0 0.18 0.59 0.7 0.32 0.51

Table 2 : Harmonic oscillator parameters which approximate the pore oscillation behaviour.

For a cylindrically shaped pore the frictional
term can be deduced from the Hagen-
Poiseuille law of flow resistance through a
capillary. There the frictional force 

� 

FR  is

proportional to the volume flow 

� 

∂V
∂t

according to

� 

FR = A ⋅ Δp = A ⋅ ∂V
∂t

⋅R (11)

with the capillary cross section 

� 

A  and the
flow resistivity

� 

R =
8µ l
π r4 (12)

On the other hand, for the oscillator the
frictional force is

� 

FR = b∂z
∂t

(13)

Combining Eqs. 11,12 and 13 leads to
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and therefore
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ρL A l
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r2
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8µ
r2ρL

(15)

In case of a tapered tube, this value has to be
corrected for the energy required by the
radial displacement of the liquid flowing
through the capillary. However, due to the
symmetric tapered shape of the bi-conical
pore this correction cancels out for a full
oscillation cycle of the fluid along the z-
direction, but the average radius has to be
adjusted to about r/2 for a nearly saturated
pore. The dependence of the frictional term
of the linear harmonic oscillator in the case
of a saturated bi-conical pore can therefore
be written as

� 

b
m

=
32µ
r2ρL

(16)

The comparison of the resonance frequency
and the frictional term between the "straight
forward" linear oscillator (LO), where
parameter values from Tab. 1 have been
used, and the average fit of a linear
oscillator to the Navier stokes calculations
(LONS) using the same parameter values is
shown in Tab. 3.



LO LONS

                     1mm

resonance frequency
[Hz]

2.76 5.5

frictional term b/m [N s
m-1 kg-1]

24 3.2

                     3mm

resonance frequency
[Hz]

0.53 1.4

frictional term b/m [N s
m-1 kg-1]

2.7 1.2

           3mm, low viscosity

resonance frequency
[Hz]

0.53 1.8

frictional term b/m [N s
m-1 kg-1]

0.27 1.0

Table 3 : Comparison of resonance frequency
and frictional terms between the linear oscillator
(LO) and the average fit of a linear oscillator to
the Navier stokes calculations (LONS)

The resonance frequencies of the LONS are
consistently about a factor of 2 larger than
for the LO. However, they compare well
within the same order of magnitude also for
different pore sizes. Therefore Eq. 4 appears
to be a good approximation which could
even be improved by an "empirical factor"
of 2.

Regarding the frictional term, the
approximation (Eq. 16) gives the right order
of magnitude, but for the LONS the
dependence on viscosity is much less than
for the LO.

Observation of the signals at the surface
In order to explore the feasibility of the
explanation by pore level oscillations, the
following approximation is made.
Assuming frequency dependent forces in the
order of a fraction c of the capillary forces
for each pore, the measured velocity at the
earth surface due to the coherent oscillations
of the pores in the hydrocarbon containing
porous layer of thickness 

� 

d  at depth 

� 

D  as
indicated in Fig. 11 can be estimated.

Figure 11 : Simple model for the occurrence of
low frequency seismic signals due to pore liquid
oscillations. At the surface a seismic sensor
measures the surface motion.

The total force  

� 

FT   represents the coherent
sum of the fractional forces of the 

� 

n  pore
oscillators

� 

FT = n Fz ,

� 

n = 3η d A
2 r 2π h

,

� 

Fz = c ⋅γ ⋅2π r sin(ω t)
(17)

This force accelerates the mass 

� 

M = D A ρR
of the overlaying rock material according to
Newton's law

� 

FT = M ∂ 2z
∂t2

(18)

which leads to a measurable velocity at the
earth surface on top of the reservoir of

� 

∂z
∂t

= − n
Mω

c ⋅γ ⋅2π r cos(ω t) = −vz cos(ω t) (19)

The value

� 

vz = n
Mω

c ⋅γ ⋅2π r = 3η d cγ
r hωDρR

(20)

is compatible with typical measured values
of the vertical component of the ground
velocity of about 10-6 m s-1  for the realistic
parameter values listed in Tab. 4.

The parameter c represents the fraction of
the capillary force which is assumed to
contribute to the total force which produces
measurable signals at the surface. The value
of c  has to be compared to the frequency
dependent forces calculated by the Navier
Stokes Equations (Fig. 9) :  the "triple line



force" and the "inertia", which are the same
forces phase shifted by half an oscillation
period (Fig. 8). The difference of these
forces between "on" and "off" resonance is
about 10% of the total force. The value of
c=10- 2  therefore represents a rather
conservative estimation which could be
chosen closer to c=10-1 .

depth of
hydrocarbon
containing
formation

D 103 m

hydrocarbon layer
thickness d 20 m

density of rock
material ρR 2·103 kg

m-3

porosity η 0.2
fraction of
maximum capillary
force at
ORCL=2·π·r

c 10-2

Table 4: Common parameter values for reservoir
structure.

Nonlinear oscillation due to a spherical
pore shape
As the initial example has shown the
explanation of the fine structure wiggles
shown in Fig. 1  may be explained by the
occurrence of non-linearity in the above
model by allowing for a more general pore
shape, e.g. spherical as shown in Fig. 12.
This defines a more general, non-linear
spring constant in a natural way. Such
nonlinearities actually provide the more
common case in nature ([9] and references
to Oh and Shatterly 1979 and Payatakes et al
1980 therein).

Figure 12: Schematic representation of a
spherical pore geometry which enables low
frequency oscillations of the contained liquid
along the z-direction. Similar to the bi-conical
case shown in Fig. 3, the liquid surface boundary
forms the oil/rock contact line and the restoring
capillary forces drive the liquid back along the z-
direction towards its equilibrium position after
an initial dislocation. While the bi-conical pore
geometry leads to a linear spring constant for the
restoring motion, the spherical pore geometry
results in a non-linear spring constant that
depends on the dislocation and therefore leads to
a non-linear restoring motion.

The non-linear spring constant depending on
the filling level 

� 

z0  is given by

� 

f = ∂
∂z

γ 2πr z( )( ) = 2πγ ∂
∂z

r2 − z0 + z( )2 = −
2πγ z0 + z( )
r2 − z0 + z( )2 (21)

which leads to the non-linear one-
dimensional differential equation

� 

∂2z
∂t 2

+ b
m

∂z
∂t

+
2πγ z0 + z( )z

m r2 − z0 + z( )2
= F0

m
cos ωt( ) (22)

The filling-level dependent oscillation mass
and frequency are

� 

m = 4
3
π r3ρL

3r2z0 − z0
3( )

2r3
(23)

and

� 

ω0 = f m ≈ 2π γ z0
m r2 − z0

2 (24)

The synthetic spectra obtained from the
nonlinear model are displayed in Fig. 13 for
different filling levels. The single peak



spectrum of the linear case splits up into
several peaks which are separated by the
driving oscillation frequency.

Figure 13: Spectrum of nonlinear oscillations in
a spherical pore for different oil saturations. Pore
liquid filling levels 

� 

z0  are between 0.3 and 0.9.
The frequency spacing of the multiple peaks is a
typical feature of nonlinear systems and
corresponds to the frequency of the driving
oscillation at 0.1 Hz, which also produces its
own overtone at 0.2 Hz. For demonstration
reasons, the damping was set to zero which leads
to sharper peaks.

The frequency of the spectrum shifts toward
larger values as the oil saturation increases.
Note that these features need a certain
transient time to build up, as is demonstrated
in Fig. 14.

Figure14: Development of the spectrum of
nonlinear oscillations in a spherical pore during
600 s for filling level 

� 

z0= 0.9 of the pore liquid.
The frequency spacing of the multiple peaks is a
typical feature of nonlinear systems and
corresponds to the frequency of the driving
oscillation at 0.1 Hz.
Natural oscillation frequency of pore: ν =3.527
Hz, mass of liquid in pore m = 2.64 ·10-5 kg.
If Eq. 22 is transformed into Eq. 1 by
approximating the third term on the left
hand side by a Taylor series,  the
coefficients A and B can be compared. It
turns out that arbitrarily large values can be
created by the variation of z0 and r, since
their difference appears in the denominators

of both coefficients. The spherical shape of
pores is therefore a valuable candidate for a
model explaining the observation displayed
in Fig. 1. However, the assumption of a
linear frictional term has to be analyzed in
more detail in order to cover additional
possible nonlinearities.

Discussion
The observed oscillations seem to
commonly appear in the low frequency
range between 1 and  10 Hz at all
investigated sites independent of the
hydrocarbon reservoir thickness. This
favours the microscopic oscillator model
compared to a reservoir thickness dependent
macroscopic resonator model. In order to
obtain sufficiently low resonance
frequencies the "spring constant" has to be
small which requires a low value of the
surface tension 

� 

γ , a large oscillating mass
and a large value of the aspect ratio 

� 

h r  .
Surface tension and interfacial tension
values in pore media are not well
investigated [9] but can be orders of
magnitude lower than the literature values of
water (

� 

73 ⋅10−3N/m) or crude oil
(

� 

20 ⋅10−3N/m) due to contamination,
increased temperatures and contact of the oil
to water as an additional liquid medium in
the pores. Water wetted pore surfaces also
lower interfacial tension and avoid pinning
effects of the ORCL [9]. A large oscillating
mass requires large pore diameters or the
coupling of several smaller pores.

The assumption of coherent superposition of
frictional forces requires either spatially
coherent excitation (e.g. by the strong long-
wavelength oceanic wave component of the
geological background noise spectrum) or a
coherent coupling mechanism between the
pores either through the liquid or the solid
phases. In the case of low frequency oceanic
wave excitation this assumption is well
satisfied. The coupling of the pore level
oscillations to the rock material and the
propagation of the seismic wave to the
surface is presently under investigation.
Also other effects that may create similar



signals, e.g. such as trapping of surface
waves in near surface geological structures
[11] are the subject of extensive numerical
modelling

Conclusions
I t  has  been shown that  the
phenomenological model of a driven one-
dimensional linear and nonlinear oscillator
can provide a natural interpretation of
characteristic spectral features empirically
attributable to hydrocarbon reservoirs. The
basic requirement for oscillations, the
presence of a restoring force on the pore
scale, has been derived from first principles
using Navier-Stokes Equations. Good
agreement between the numerical results
and the observations is achieved for realistic
parameter values using the dominant part of
the ever present background wave spectrum,
the seismic wave field around 0.1-0.2 Hz
caused by oceanic waves, as the driving
force for the oscillations.
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