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Abstract

Hydrocarbon Microtremor Analysis (HyMAS) is an innovative passive technology identifying the hydrocarbon content of
geological structures by analyzing low frequency seismic signals. Hydrocarbon indicating information is extracted
from spectral modifications of naturally occurring seismic background noise waves in the 0.01 — 10 Hz range passing
through hydrocarbon bearing porous structures.

In this paper, a simple description of this reproducibly observable phenomenon in terms of a one-dimensional linear
model of an oscillating liquid filled porous medium is presented and its relevance for an explanation of the underlying
basic HyMAS signal creating mechanisms and related parameters are discussed. Observed values of about 3 Hz for the
oscillation and 2:10% m/s for the amplitude of the vertical surface movement velocity could be reproduced by introducing
realistic parameter values for the geophysical properties in the model.

As a direct hydrocarbon indicator, HyMAS is an ideal complement to 2D- and 3D-seismic structural imaging
technologies. Numerical modeling of suitable geological structures both in the macroscopic as well as in the microscopic
domain shows how the seismic background noise spectrum can be modified in a different way when interacting with
geological structures containing hydrocarbon filled pores compared to interacting with similar structures not containing
hydrocarbons. In addition to reservoir detection, HyMAS also has the potental to determine reservoir parameter values
and their evolution over time.
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Oscillations

Principle of HyMAS measurement: Background
waves interacting with hydrocarbon bearing linear harmonic oscillator model
geological structures show spectral modifications, in
this case around 3 Hz. The traces on top indicate
typical spectral power densities of the vertical
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I I 1 The main component of the ever present
background wave field ( geological unrest)
consists of the oceanic wave peaks around 0.1
Hz. They drive the hydrocarbon containing
reservoir modelled as a one-dimensional
harmonic oscillator which produces the wave
pattern that can be detected at the surface by
high sensitivity seismometers.
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"Patchy" saturation

do ted . )
e The thinnest, compliant parts of the pore space

can be wetted throughout the rock,
but on much larger scales

some patches of the rock are
undersaturated while other patches
are fully saturated.

From Mavko & Nolen-Hoeksema

1994 in

X. Lietal " PHYSICS OF PARTIALLY
SATURATED POROUS MEDIA: Residual
Saturation and Seismic-Wave Propagation"
Annu. Rev. Earth. Planet. Sci. 29(2001)419-460.
050809hre1646

"Capillary Migration"

R. Cossé " Basics of Reservoir Engineering"
Editions Technip, Paris (1993)
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"Digital rock" sample

An open-cell Gaussian random field (GRF3).
The structure shown is the porespace, the
transparent part is the grain material.

E. H. Saenger and S. A. Shapiro " Seismic
effects of viscous Biot-coupling: Finite difference
simulations on micro-scale"

Geophys. Res. Let. 32, L14310 (2005)1-5.
050809hre1700

"pendular" and "funicular" saturation
For a fluid phase in the pendular regime, the
fluid is immobilized by capillary

trapping.

The funicular regime of saturation occurs when
the porous medium has an intermediate
saturation with both phases. Funicular liquid
bodies touch each other and merge, forming a
continuous network of both phases in the
porous medium.

From Scheidegger 1974 in

X. Lietal " PHYSICS OF PARTIALLY
SATURATED POROUS MEDIA: Residual
Saturation and Seismic-Wave Propagation”
Annu. Rev. Earth. Planet. Sci. 29(2001)419-460.
050809hre1646

"Development of a CO, sequestration”
as a residual phase in brine-saturated

GEOPHYSICAL RESEARCH LETTERS, VOL. 23, MO 16, PAGES 2083-2056, AUGUST 1. 199 GEOPHYSICAL RESEARCH LETTERS, VOL. 24, NO, 24, PAGES 3309-3312, DECEMBER 15, 1997

Sefemic attenuation in artificial glass cracks: Physical
and physicochemical effects of Nuids om

R Moerig. W_F. Waite, 0. 8, Boyd, I, €. Gening, 11, A, Speeeker

Abstract. Atenuation and stiffness of artificial, fluid containing
cracks are measured from 3 mHz to 10 He The cracks are
wedge-shaped; made from glass micrescope slides, To explain
the frequency dependence of hoth the attenuation and the stiff-
ness (akin to a modulus), we need w appeal to well known fluid
flow mechanisms and 10 the physicochemival interaction beiween
the fluid and crack surface. By aliering the wettability of the
crack surfaces. surfactants change the mobility of water and
thereby change the frequency dependence of the fluid flow ef-
fieets by several orders of magnitude.
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e long sad 25 mm wide, The vertical dimension is exagger
ated. The total height of the sample is .73 mm.
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Seismic attenuation in a partially saturated, artificial crack due
Joyemrst? [Fotuomiiest | to restricted contact line motion

Abstract. A lon and stiffness have been
made on partially saturated, artificial cracks over the frequency
range 2 mHz 10 10 He, The wedge-shaped eracks are open sys-
tems composed of glass slides separated by wires. A monezero,
frequency independent amenuation has been measured at low fre-
quencies for these cracks.  Additionally, the low frequency stiff-
ness of a partinlly saturated crack is larger than that of o dry
crack. For this geometry and frequency range, no dissipative
Muid flow is expected. Local fluid flow models predict zero al-
enuation and no stiffening for these open systems. We have de-
veloped @ model based on the restricted motion of the fluid me-
niscus to explain the measured bow frequency results. In this
maodel, physicochemical interactions between the fluid and solid
are responsible for restricting motion of the three phase boundary

clemp e I bevween liquid, solid and gas (the contact ling). We compare
r ) 1 Comtni Ling Velosity medel predictions with data measurcd in artificial cracks partially
‘Ij | -e AR gEnaceal b Figure 3. C Angle versus Contact Line Velocity Sche- safursled with deionized water. Contact line mobility is vared

matic. The range of contact angles arcand the equilibrivm cos- by exposing the crack surfaces o increasing concentrations of
tact angle, Oy, associabed with & statioeary contact line represents sodiumdodecyloullate (SD5) in deionized watcr.  Increases in

the contact angle hysteresis. This range scales with the magal-  |ow frequency attenuation (below .1 Hz) and crack stiffness cor-
Figure I, Schematic of the anificial sample. The sampde is 75 frequency [Hz] tude of the force resisting contact line matica,

relate with increasing surface exposure to SIS, These measured
trends can be qualitatively modeled by reducing meniscus mobil-
fry as the surface contamination increases.
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Micromechanical Models
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Bi-conical pore geometry which enables low frequency oscillations of the contained liquid along the z-direction. The liquid
surface boundary forms the oil/rock contact line (ORCL) between the oil and water phases as well as the water wetted pore
surface where capillary forces occur. Liquid in equilibrium: the capillary forces in positive and in negative z direction balance
each other. After a small displacement of the liquid in the positive z-direction the capillary force pointing upward has decreased
and the one pointing downward has increased compared to the equilibrium. The resulting restoring force drives the liquid back
along the negative z-direction towards its equilibrium position. The same holds for a dislocation in the negative z-direction.
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Comparison of measured and modelled
spectra
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field measurements

Numerical simulation of the superimposed spectrum of 1000 linear harmonic oscillators for three different parameter distributions:
a) all oscillators with normalized resonance frequency at w,= 1 and damping p=0.1;
b) both resonance frequency and damping vary according to a log-normal distribution with sigma = 2.84;
c) both resonance frequency and damping vary according to a broad log-normal distribution with sigma = 3.47.
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Macroscopic modelling

The micromechanical motion of the pore content transmits some of its energy to the surrounding rock material by friction. The resulting
collective effect averaged over the pores containing hydrocarbons can be measured at the surface as seismic vibrations or
microtremors. The analysis by the one-dimensional oscillator scheme allows for a convenient approximation both for the observed
frequency as well as for the vibration strength. For an adequate numerical model in 2D or 3D, a more sophisticated approach has to
be used which involves the integration of effects on the pore scale into a macroscopic system of calculation grid points.
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Identification of reservoir parameters

The interaction of background waves with a hydrocarbon bearing reservoir generates characteristic wave patterns which depend on the
specific parameters of the reservoir such as density, porosity, permeability, saturation, interfacial tension between the liquids and
gases contained in the pore and geometry of the reservoir. Approximated values of these parameters can be predicted by comparison
of synthetic signals generated by the numerical model and real data acquired over the survey field.
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