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Summary 
 
The finite element method is used to solve Biot’s quasi-
static equations of consolidation. We perform 1D and 2D 
numerical creep tests of partially saturated porous rocks to 
calculate the frequency-dependent seismic attenuation and 
phase velocity from the modeled stress-strain relations. The 
resulting attenuation and velocity dispersion are due to 
fluid flow induced by pressure differences between 
mesoscopic-scale regions of the rock fully saturated with 
different fluids (White’s model). Comparisons of our 
numerical results with analytical solutions show accuracy 
for a wide range of frequencies. The algorithm is applied to 
a 1D partially saturated rock with a random distribution of 
saturation. We show that the numerical results for the 
random distribution can be approximated with a volume 
average of analytical solutions for periodic media.  
 
Introduction 
 
Attenuation of seismic waves in partially saturated rocks is 
of great interest because it has been observed that gas and 
oil reservoirs often exhibit high attenuation (e.g., Dasgupta 
and Clark, 1998; Rapoport et al., 2004), especially at low 
frequencies (Chapman et al., 2006). Data, from both 
laboratory and field, and theoretical work show that 
attenuation can be related to an increase in reflectivity in 
the low-frequency range (Korneev et al., 2004; Quintal et 
al., 2009). Goloshubin et al. (2006) showed three examples 
of field data in which oil-rich reservoirs exhibit increased 
reflectivity at low seismic frequencies (around 10 Hz).  
 
At low seismic frequencies, wave-induced fluid flow on the 
mesoscopic scale is presumably the major cause of wave 
attenuation and velocity dispersion in partially saturated 
porous rocks (e.g., Norris, 1993; Johnson, 2001; Pride and 
Berryman, 2003a, b). The mesoscopic scale is the scale 
much larger than the pore size, but much smaller than the 
wavelength. White (1975) and White et al. (1975) were the 
first to introduce the wave-induced fluid flow mechanism 
for a 3D model of a water-saturated medium with spherical 
gas-saturated inclusions and a 1D layered model. In 
White’s model, a partially saturated rock is represented by 
a poroelastic solid with regions fully saturated by one fluid 
and regions fully saturated by another fluid. Wave-induced 
fluid flow is caused by pore pressure differences between 
the two regions. Dutta and Odé (1979a, b) showed that 
wave-induced fluid flow can be modeled using Biot’s 
equations (Biot, 1962) for wave propagation in poroelastic 
media with spatially varying petrophysical parameters. 
Several theoretical studies, based on White’s model and 

Biot’s theory (Biot, 1962), provide various closed-form 
analytical solutions for seismic attenuation in porous 
saturated media with periodic mesoscopic-scale 
heterogeneities of particular geometries, such as layered 
media or media with spherical inclusions (e.g., Johnson, 
2001; Pride and Berryman, 2003a, b). There are also 
closed-form analytical solutions for randomly layered 
media (e.g., Gurevich and Lopatnikov, 1995), however, 
they are restricted to infinite media and to particular 
autocorrelation functions. Müller and Gurevich (2005) 
showed that significant differences in the magnitude and 
frequency dependence of attenuation are caused by only the 
use of different autocorrelation functions. Additionally, in 
the low-frequency limit, 1/Q (Q is the quality factor, 1/Q is 
a measure of attenuation) scales differently in infinite 
randomly layered media, compared to periodically layered 
media or finite randomly layered media. For infinite 
random media, 1/Q is proportional to the square root of 
frequency, while for periodic and finite random media it is 
proportional to frequency (Müller and Rothert, 2006).  
 
Thus, stable and accurate numerical solutions for seismic 
attenuation in porous saturated media with mesoscopic-
scale heterogeneities are required, for example, for: (i) 
heterogeneities with complicated geometries, (ii) finite 
random media with arbitrary distribution pattern, or (iii) 
media containing more than two heterogeneities, such as 
partial saturations with more than two fluids. 
 
Calculating seismic attenuation due to wave-induced fluid 
flow with numerical algorithms for wave propagation in 
poroelastic media (e.g., Zhu and McMechan, 1991) is 
computationally inefficient because wave propagation, 
fluid flow and fluid pressure diffusion occur on different 
time scales. An efficient method is a quasi-static creep test, 
suggested by Masson and Pride (2007), in which they 
solved Biot’s equations (Biot, 1962) for wave propagation 
in poroelastic media with the finite difference method. In 
this study, we performed similar quasi-static creep tests for 
calculating seismic attenuation as suggested by Masson and 
Pride (2007), however, we solved a simpler mathematical 
problem, Biot’s equations of consolidation (Biot, 1941), in 
which inertia forces do not play a significant role and 
therefore are excluded. Attenuation due to wave-induced 
fluid flow is controlled by fluid pressure diffusion. For 
calculating the amount of attenuation, it is sufficient to 
model only the pressure diffusion. We used the finite 
element method to solve Biot’s equations of consolidation 
in the u-p formulation (Zienkiewicz and Shiomi, 1984). We 
show that our numerical scheme is powerful and accurate 
in calculating attenuation and velocity dispersion due to the 
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wave-induced fluid flow mechanism. We further show that 
averages of White's analytical solution provide a good 
estimate for attenuation and velocity dispersion in rocks 
with random distributions of saturation.  
 
The u-p formulation of Biot’s equations of consolidation  
 
Biot’s equations of consolidation (Biot, 1941) are  
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where a dot on top of a variable represents the first time 
derivative and ∇  is the Nabla operator for spatial 
derivatives. Material parameters are defined in Table 1. The 
symbol p denotes the pore fluid pressure, u is the vector of 
solid displacements with components ui in the i-th 
directions, and σ is the total stress tensor with components  
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Using equation 2, equations 1 can be expressed in terms of 
the two unknowns u and p, therefore called u-p formulation 
(e.g. Zienkiewicz and Shiomi, 1984).  
 
Table 1. Definitions of symbols for the petrophysical parameters.  

Symbol Petrophysical parameter 
k Permeability 
η Viscosity of the fluid 
Φ Porosity 
μ Shear modulus of the dry frame 
K Bulk modulus of the dry frame 
Ks Bulk modulus of the solid grains 
Kf Bulk modulus of the fluid   
ρs Density of the solid grains 
ρf Density of the fluid 
λ K – 2μ/3 
α 1 – K/Ks 
M 1/(Φ/Kf  – (α – Φ)/Ks) 

 
The finite element scheme 
 
Biot’s equations of consolidation in the u-p formulation are 
solved with the finite element method, using the Galerkin 
method (Zienkiewicz and Taylor, 1989). Due to the u-p 
formulation, our scheme benefits from natural boundary 
conditions for fluid flow and prescribed total stresses. We 
use a first order implicit finite difference operator for the 
time derivative. For the 2D scheme, an unstructured 

triangular numerical mesh (Shewchuk, 1996, 2002) is used 
in a way that material boundaries coincide with element 
boundaries, allowing a spatially variable resolution, as 
shown in Figure 1 (Frehner et al., 2008). The element is 
triangular and isoparametric with seven nodes (Zienkiewicz 
and Taylor, 1989).  
 

 
Figure 1. Numerical mesh used for the 2D simulation. A quarter of 
the sample domain is shown. Blue and red lines distinguish 
elements with different material properties.  
 
Methodology of the numerical creep test 
 
We perform numerical modeling of a creep test to compute 
the time-dependent strain response to a compressive stress 
applied on the boundaries of a numerical rock sample, 
representing a partially saturated rock (White, 1975; White 
et al., 1975). Then we use the time-dependent stress-strain 
relation to calculate attenuation and velocity dispersion due 
to fluid flow, according to Masson and Pride (2007).  
 
In the 1D White’s model, a partially saturated rock is 
represented by a poroelastic solid composed of two 
periodically alternating layers, each one fully saturated by a 
different fluid. The minimum Representative Volume 
Element (RVE) in this case contains one pair of layers with 
different fluid content. We refer as RVE to the smallest 
sample that statistically represents the distribution of 
heterogeneities in the rock. The numerical rock sample for 
our simulation is simply the mentioned RVE. We consider 
that the relative fluid velocity is zero on the boundaries 
(undrained condition). Due to symmetry reasons (the fluid 
flow is zero in the middle of the layers during the 
experiment), the numerical rock sample is selected from the 
layered medium as half a layer on top and bottom, and one 
layer in the middle. We simulate a 1D compression test by 
applying a step load only at the top of the sample and 
setting the displacement at the bottom to zero. We use 
variable time steps, with small time increments at the 
beginning of the simulation, and larger time increments 
towards the end. During the simulation, the stress and strain 
rates are calculated and volumetrically averaged over the 
sample domain. Next, a discrete Fourier transform is 
applied to the averaged stress and strain rates to obtain their 
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values as functions of frequency, f. The frequency-
dependent quality factor and phase velocity are then 
calculated from the averaged stress and strain rates, 
according to Masson and Pride, 2007. 
 
In 2D, the partially saturated rock can be represented by a 
poroelastic solid fully saturated with one fluid, with 
circular inclusions of the same solid material fully saturated 
by another fluid. Our numerical rock sample is the RVE, 
selected as a square with one circular inclusion in the 
middle. The boundary of the square corresponds, 
approximately, to the region where the fluid flow is zero. 
We simulate a 2D pure compression test by applying 
compressive step loads of equal magnitude on the four 
boundaries of the square sample.  
 
Numerical tests  
 
We test the 1D algorithm for a fractured rock described as a 
layered model in which the fractures are very thin (5 mm) 
compliant layers alternating with much thicker (5 m) layers 
of a stiffer porous rock of lower porosity and permeability 
(Table 2). We assume the thicker layers to be saturated 
with water and the fractures with gas (Table 3), because the 
wetting fluid (the water) preferentially saturates regions of 
small pores due to capillary effects (Goertz and Knight, 
1998). For the simulation, the thin layer is divided into 20 
elements and the thick layer into 400 elements. The total 
simulated time is 7.4 s, divided into 200 time increments of 
variable length. The simulation lasts less than two seconds 
on a personal computer. Figure 2 shows the numerical and 
analytical (e.g., Carcione and Picotti, 2006) results for the 
phase velocity, Vp, and the inverse of quality factor, 1/Q. 
The differences in thickness and petrophysical parameters 
have a significant effect on a broad range of frequencies, 
but the numerical results fit well the analytical solution.  
 
Table 2. Petrophysical parameters for the fractured rock.  

Rock matrix Surrounding rock Fractures 
h (m) 5  0.005 
k (mD) 100 1000 
Φ 0.10 0.20 
μ (GPa) 5 3 
K (GPa) 6 4 
Ks (GPa) 40 40 
ρs (kg/m3) 2700 2700 

 
Table 3. Petrophysical parameters for water and gas.  

Fluid Water Gas 
Kf (GPa) 2.3 0.022 
ρf (kg/m3) 1000 140 
η (Pa s) 0.003 10–5 

 
The 2D algorithm is tested for gas-saturated sandstone with 
circular water-saturated inclusions (Tables 3 and 4). The 

side of the square is 1 m and the radius of the inclusion is 
40 cm. We use a total time of 0.39 s, divided into 200 time 
increments of variable length. The spatial domain contains 
approximately 1200 triangular elements of variable area 
(Figure 1), yielding higher resolution close to the boundary 
of the inclusion where most of the fluid flow occurs. The 
numerical results (Figure 3) for the real part of the 
undrained bulk modulus, Ku, and the inverse of the quality 
factor associated with a pure undrained compression, 
1/QKu, are checked against theoretical low- and high-
frequency limits (e.g., Toms et al., 2006). 
 
Table 4. Petrophysical parameters for a sandstone.  

Rock matrix Sandstone 
k (mD) 100 
Φ 0.20 
μ (GPa) 3 
K (GPa) 4 
Ks (GPa) 40 
ρs (kg/m3) 2700 

 

 
Figure 2. Result of the 1D simulation for the fractured rock.  
 

 
Figure 3. Result of the 2D simulation for gas-saturated sandstone 
with circular water-saturated inclusions.  
 
Rocks with random distribution of saturation 
 
We numerically investigate the effect of a random size 
distribution of saturation heterogeneities on the frequency-
dependent attenuation and phase velocity of a rock. The 
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model is a layered medium consisting of one hundred pairs 
of layers of homogeneous solid frame, each pair composed 
of a fully gas-saturated layer at the top and a fully water-
saturated layer at the bottom (Table 3 and 4). We build up 
the model by generating one hundred thicknesses of pairs 
randomly varying from 1 cm to 1 m, and one hundred gas 
saturation values for such pairs randomly varying from 10 
to 90 % (Figure 4). The random values are generated with 
the function rand from MATLAB. The overall gas 
saturation in the model is 46.4 %. The minimum and 
maximum thicknesses are 0.15 and 70 cm for gas-saturated 
layers, and 0.43 and 81 cm for water-saturated layers. The 
model thickness is 44.9 m, and the numerical rock sample 
is the entire model. Layers with thicknesses lower than 5 
cm are divided into 20 elements, the ones from 5 to 50 cm, 
into 40 elements, and the ones larger than 50 cm, into 60 
elements. The total simulated time is 9.2 s, divided into 200 
increments with variable length. The simulation lasts less 
than one minute on a personal computer. Figure 5 shows 
the numerical solution, and an approximate analytical 
solution calculated with a volume average of the analytical 
solutions of the 1D White’s model (e.g., Carcione and 
Picotti, 2006) for the P-wave modulus of each pair:  
  100 100

1 1
avg n n n

n n
H L H L

= =

 ≈  
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∑ ∑ , (5) 

where Ln is the thickness of the n-th pair of layers having 
the complex P-wave modulus Hn. The approximated P-
wave modulus, Havg, is used to calculate 1/Q and Vp (e.g., 
Carcione, 2007). We observe in Figure 5 that the low-
frequency asymptote of 1/Q has the theoretically predicted 
behavior for finite random media (Müller and Rothert, 
2006), i.e., proportional to frequency. The approximated 
analytical results fit well the correct numerical results.  
 

 
Figure 4. Frequency distribution of (left) thicknesses of the one 
hundred pairs of gas- and water-saturated layers and (right) values 
of gas saturation in those pairs. 
 
Conclusions  
 
We presented a finite element scheme to calculate 
frequency-dependent attenuation and velocity dispersion in 
the seismic frequency range due to fluid flow in poroelastic 
rocks with mesoscopic-scale heterogeneities using a quasi-
static creep test. The methodology for the creep test is 

based on work presented by Masson and Pride (2007), but 
instead of solving Biot’s equations of wave propagation in 
porous media (Biot, 1962) using the finite difference 
method, we solve Biot’s equations of consolidation (Biot, 
1941) using the finite element method. The numerical 
scheme employs natural boundary conditions for no fluid 
flow to represent an undrained rock sample. The time 
derivatives are implicitly solved, allowing for large and 
variable time increments and making the algorithm 
computationally efficient. Comparisons with analytical 
solutions show that our 1D and 2D numerical results are 
accurate over a wide range of frequencies. The numerical 
scheme is well-suited for modeling seismic attenuation and 
dispersion due to fluid flow in realistic media, such as 3D 
rock samples with heterogeneities of complicated 
geometries and arbitrary distribution patterns, or saturated 
by several fluid types (e.g., water, gas and oil).  
 
We applied the numerical scheme to a rock with a random 
distribution of saturation. We proposed a volume average 
of analytical solution for approximating the complex P-
wave modulus of such rocks. The approximated analytical 
solution fits well the correct numerical results. When well 
logging data are available, this average procedure can be 
directly used to estimate the frequency-dependent quality 
factor and velocity dispersion of a finite rock unit. 
 

 
Figure 5. Numerical result for the layered model with random 
distribution of saturation and our approximated analytical solution. 
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