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Theoretical and numerical modeling of waves in three-phase media
-a snapshot of the work in progress -
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Concept of phenomenological continuum-mixture theory. Individual fluid 
surfaces disappear during the superposition of the three continuum fields. 

Sketch of oil blob oscillations with pinned 
contact lines. Solid lines: equilibrium state. 
Dashed lines: excited state. After [8]
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Dispersion relations of the three P-waves for gas-
water saturation.

P-wave phase velocities and attenuation coefficients versus water saturation for both gas-water and air-water 
partial saturation. P1 agrees well with the Gassmann-Wood limit for both partial gas and air saturation.

Snapshot of (wx
2+wz

2)1/2 showing Biot fast and slow P-
waves scattered by heterogeneities using an unstructured 
finite element mesh. The Biot equations [9] have been 
implemented using a velocity-stress formulation.  

Results of accuracy tests for different numerical 
algorithms. The analytical solution is compared with the 
vertical displacement recorded at a syntethic receiver 
to the right of the circular inclusion (see left Figure a).
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Abstract
We present a mathematical model for wave propagation in a partially saturated porous medium based on the Theory of Porous Media (TPM, e.g. [1, 10]). The medium is composed of a elastic 
skeleton, a compressible wetting fluid and a compressible non-wetting fluid. The solid grains are assumed incompressible (rigid grain assumption). The capillary pressure depending on saturation is 
described by the empirical Brooks and Corey equation [6]. Both porosity and saturation depend on the volumetric deformation of all phases and are variable (i.e. they are dependent field variables). 
We developed a new three-phase model because we want to extend the continuum model and implement the effects of surface tension. The restoring force generated by surface tension can cause 
oscillations of water or oil blobs in partially-saturated porous material with gas or air as third phase. The restoring force due to surface tension is usually not considered in continuum three-phase 
models for wave propagation. 

The main aims of our study are:
•Coupling wave propagation in partially saturated rocks with pore fluid oscillations caused 
by surface tension. 

•Implementation of attenuation due to fluid oscillations.
•Study attenuation of P- and S-waves in three-phase media due to wave induce flow
(e.g., depth dependence due to gas pressure increase).

•Accurate implementation of capillary pressure for cases of very high or low saturation. 
•Study scattering of waves by three-phase media.
•Develop a simpler but still accurate three-phase model for partially gas-saturated rocks
with respect to existing models [e.g., 3 and 5].

Some basic equations of the mathematical model with effective surface tension term

Field equations Constitutive relations Brooks and Corey model                                         Assumptions of continuum mixture                  

Porosity and saturation evolution

Effective surface tension (spring)

Results of the three-phase model (so far without surface tension)
We calculated the three P-wave phase velocities (P1, P2, P3) and the corresponding attenuation coefficients from the eigenvalues of the governing system of equations. The results of the 
Gassmann-Wood limit [e.g., 2] were calculated for a value of the bulk modulus of the solid grain of 35 GPa. The first P-wave (P1) phase velocity of the three-phase model assuming incompressible 
grains agrees well with the Gassmann-Wood limit assuming compressible grains. The results are calculated for a Sandstone partially saturated with either air and water or gas and water.

Material parameters of Massillon Sandstone
(from [3], after [4]) 

The results for P1, P2, P3 and the attenuation 
coefficients agree well with the results of the 
three-phase model developed by [3] including 
compressibility of the solid grains. However, the 
coefficients in our model are considerably simpler. 
In our model the saturation is a dependent field 
variable, whereas it is constant e.g. in [5]. 
Our results agree well with the Gassmann-Wood 
limit and the results of [3] because the non-wetting 
phase is gas or air having a significantly smaller 
bulk modulus than the wetting phase and the 
solid grains.

The way forward to numerical implementation
We compared finite difference and finite element methods for modeling two-dimensional (2D) scattering of elastic waves by a weak circular inclusion [11]. Time integration has been done with both 
explicit and implicit methods, also with an implicit finite element time integration. We compared the numerical results with an analytical solution for 2D scattering of elastic waves based on 
displacement potentials using Hankel functions [7]. The finite element method has been used to solve Biot’s equation [9] and will be used to solve the above described TPM equations.
Main result: The finite element method with explicit time integration yields best results with respect to accuracy and computation time.
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