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Phase Velocity Dispersion and 
A  enua  on of Seismic Waves 
due to Trapped Fluids in Residual 
Saturated Porous Media
PropagaƟ on of seismic waves in parƟ ally saturated porous media depends on various mate-
rial properƟ es, including saturaƟ on, porosity, elasƟ c properƟ es of the skeleton, viscous 
properƟ es of the pore fl uids, and, addiƟ onally, capillary pressure and eff ecƟ ve permeabil-
ity. If the weƫ  ng fl uid is in a disconƟ nuous state (i.e., residual saturated confi guraƟ on), 
phase velociƟ es and frequency-dependent aƩ enuaƟ on addiƟ onally depend on microscopi-
cal (pore-scale) properƟ es such as droplet and/or ganglia size. To model wave propagaƟ on 
in residual saturated porous media, we developed a three-phase model based on an 
enriched conƟ nuum mixture theory capturing the strong coupling between the micro- and 
the macroscale. The three-phase model considers a conƟ nuous and a disconƟ nuous part. 
The conƟ nuous part exhibits similar behavior as the poroelasƟ c model introduced by Biot. 
The disconƟ nuous part describes the movement of blobs/clusters of the weƫ  ng fl uid and 
is based on an oscillator rheology. In comparison with other three-phase models, the pre-
sented one accounts for the heterogeneity of the disconƟ nuous fl uid clusters by use of 
their dynamic properƟ es, i.e., their staƟ sƟ cally distributed inerƟ a, eigenfrequency, and 
damping eff ects. This heterogeneous and disconƟ nuous distribuƟ on of the weƫ  ng fl uid in 
the form of single blobs or fl uid clusters is represented by a model-embedded distribuƟ on 
funcƟ on of the cluster sizes. We defi ne a dimensionless parameter that determines if the 
overall moƟ on of the residual fl uid is dominated by oscillaƟ ons (underdamped, resonance) 
or not (overdamped). Our results show that the residual fl uid has a signifi cant impact on the 
velocity dispersion and aƩ enuaƟ on no maƩ er if it oscillates or not. For long wavelengths 
our model coincides with the Biot–Gassmann equaƟ ons. We show under which condiƟ ons 
and how the classical biphasic models can be used to approximate the dynamic behavior of 
residual saturated porous media.

AbbreviaƟ ons: PDF, probability density funcƟ on; REV, representaƟ ve elementary volume.

To understand and characterize the dynamical behavior of partially saturated 
porous media, such as soils, rocks, or organic materials, the partial properties of the solid 
skeleton, of the inherent pore fl uids and, in addition, the main physical coupling eff ects 
between these interacting constituents have to be taken into account. Since the semi-
nal work of Biot (1956a,b) and Frenkel (1944) in the middle of the last century, many 
theoretical and numerical studies about wave propagation phenomena in fully saturated 
porous media have been published (e.g., Bourbié et al., 1987; Stoll, 1989; Carcione, 2007, 
and references therein). To describe the macroscopic behavior of seismic waves propa-
gating through partially saturated media (i.e., porous media saturated with a wetting 
and a nonwetting pore fl uid), the biphasic Biot-type approach was extended to take 
into account quasistatic (Santos et al., 1990; Tuncay and Corapcioglu, 1996; Wei and 
Muraleetharan, 2002; Carcione et al., 2004; Lo and Sposito, 2005; Albers, 2009) and 
dynamic capillary eff ects (Lu and Hanyga, 2005). In contrast to Biot’s poroelastic model, 
three longitudinal waves and one shear wave are predicted in such three-phase approaches. 
Th ese three-phase models are able to describe phase velocities and attenuation as a func-
tion of saturation of the wetting fl uid, sw. In addition to the frequency-dependence of 
attenuation and phase velocities, the results of these models also depend on capillary 
pressure, pc. Available experimental results of lab-scale wetting–dewetting experiments 
(soil-water characteristic curves) can be adopted straightforwardly. Standard pc(sw) func-
tions of van Genuchten (1980) or Brooks and Corey (1964) are embedded in such models. 
In low-frequency (<5 kHz) laboratory experiments, Murphy (1982) systematically stud-
ied the dependence of the fast P-wave and the S-wave on saturation of the wetting fl uid, 
sw, for water-saturated Massilon sandstones.
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Common to all these continuum models, describing propagating 
waves on a macro scale, is the fact that they do not cover the case 
of residual saturation of the porous medium. In this case blobs 
or clusters of wetting fl uid are disconnected or are connected via 
very thin water fi lms. As such water fi lms can be considered neg-
ligible in terms of their infl uence on wave propagation, the water 
distribution for the purpose of this study can be approximated 
as disconnected water blobs and clusters of diff erent sizes and 
shapes, which occupy only a single or several pores. Th e size of the 
individual fl uid clusters can be widely distributed, for example in 
a polydisperse granular medium. Th e properties (eff ective phase 
velocities and attenuation) strongly depend on this distribution 
of fl uid cluster size. Propagating waves at low seismic frequencies 
( f < 100 Hz) are not aff ected by the discontinuous wetting fl uid 
because the wavelength is much larger than the characteristic clus-
ters’ sizes. On the other hand, a wave propagating through the 
continuous solid skeleton or through the continuous nonwetting 
fl uid at higher frequencies is able to excite the blobs of wetting fl uid 
through an exchange of momentum.

Th is phenomenon could be adopted in future applications. Th e 
nondestructive characterization of partially saturated soils in the 
vadose zone is still a challenge. Th e present mathematical model 
could be the basis of an inverse parameter identification tool, 
characterizing the soil with respect to its amount of saturation 
and determining the eff ective sizes of fl uid clusters. Especially the 
information about the characteristic length scale of the wetting 
fl uid in the residual state (i.e., specifi c surface areas) is one major 
attribute of the proposed model. Exciting and mobilizing discon-
tinuous wetting fl uids through an imposed fl ow of the nonwetting 
fl uid is not yet used in technical applications. Nevertheless, fi rst 
studies and experiments have been performed, for example as 
enhanced oil recovery (Beresnev and Johnson, 1994) or enhanced 
groundwater remediation (Reddi and Challa, 1994; Reddi and 
Wu, 1996). Th e acoustically enhanced ganglia mobilization and 
dissolution of dense non-aqueous phase liquids was successfully 
studied experimentally in the low-frequency range (10–225 Hz) 
in a monolayer of glass beads (Chrysikopoulos and Vogler, 2006) 
and in a sand core (Roberts et al., 2001). Whether such methods 
will turn out to be successful or not, the prospective knowledge 
about wave propagation in partially saturated media will help 
to characterize such materials. Th eoretical investigations of the 
excitation and movement of blobs and clusters of wetting fl uid in 
porous media were performed for idealized pore geometries on the 
pore scale (Hilpert et al., 2000; Beresnev, 2006; Hilpert, 2007; 
Holzner et al., 2009). Depending on the geometrical and surface 
properties of the pore space, Hilpert et al. (2000) distinguished 
between pinned and sliding motion of the contact lines between a 
single fl uid cluster and the solid skeleton. When externally excited, 
a frequency-dependent resonance behavior of the blobs with a 
maximum response at the resonance frequency of the blob was 
observed. Th is resonance behavior will be one important element 
of the presented model.

On the macroscale, Frehner et al. (2009, 2010) investigated isotro-
pic elastic solids, representing a residual saturated porous medium 
as a single-phase material. Th ey proposed a spectral modifi cation 
of the elastic wave around the resonance frequency of the trapped 
residual wetting fl uid. Th e derived rheology consists of an elastic 
part for the solid and an oscillator part describing the discontinu-
ous blobs or clusters of wetting fl uid. Recently, Steeb et al. (2010) 
extended this approach to multiphase materials. For this, the 
continuous elastic part of the model was replaced by a poroelastic 
medium. Consequently, and well-known from biphasic poroelastic 
materials (Biot, 1956a), the continuous part of the proposed model 
is able to predict two longitudinal wave modes and one shear wave 
mode. Furthermore, the low- and high-frequency limits in this 
model coincide with Biot’s theory. A distinct deviation from Biot’s 
theory in phase velocities and attenuation is predicted around the 
resonance frequency of the blobs and clusters of wetting fl uid.

Th e presented theory is based on the basic ideas of Frehner et 
al. (2009, 2010) and Steeb et al. (2010). It develops the physical 
framework from basic principles including the mathematical 
homogenization process of the new physical properties. Th e dis-
tinct fl uid patches are modeled as harmonic oscillators and can 
account for three diff erent types of attenuation: oscillations at 
their eigenfrequency, viscous eff ects inside the fl uid body, and 
sliding motion relative to the solid. Th ere are two key features 
of the model that support further investigation of residual satu-
rated porous media. First, the distinction between the inherent 
attenuation mechanisms (energy loss due to oscillations or vis-
cous attenuation) helps characterizing the dynamic behavior of 
the system. Second, the physical phenomena on the microscale are 
linked to the macroscale parameters by a concise upscaling tech-
nique. Th is allows for a predication of the dynamic values on the 
macroscale by knowledge about the microscopic morphology.

Th e presented model enhances existing macroscale wave propa-
gation models fundamentally. Local or squirt fl ow models (e.g., 
Dvorkin and Nur, 1993) deal with an additional length on the 
microscale and introduce attenuation via an additional mode 
of motion. Th e physical relation to the fl uid patches, like their 
geometry, surface tension, or viscosity, is not taken explicitly into 
account. Th e presented model does not enhance the intrinsic 
motion of all phases; it introduces new dynamical mechanisms 
for the wetting phase based on the distribution of different 
disconnected fl uid clusters. Local fl ow is included within the 
possible damped oscillation modes of the discontinuous phases 
and contributes to the attenuation. In contrast, so-called “patchy-
saturation” models consider a partially saturated porous medium 
with two fl uid phases, which can both fl ow (e.g., White et al., 
1975; Dutta and Odé, 1979a,b; Norris, 1993; Toms et al., 2006; 
Quintal et al., 2011). Th ese patchy-saturation models predict 
attenuation and dispersion of seismic waves in the low-frequency 
range (<100 Hz), which is caused by wave-induced fl uid fl ow 
(Pride et al., 2004). Th is wave-induced fl uid fl ow is the result 
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of pore pressure diff erences in the two fl uid phases, which have 
diff erent compressibilities (e.g., gas and water). Extended contin-
uum models of higher order, like in Metrikine and Askes (2002) 
enhance the kinematical behavior of a single phase. For example, 
such classes of models take into account the motion of the micro-
structure of the material independently from the motion on the 
macroscale. Nevertheless, the aim of extended continua is dif-
ferent from the current work, because the latter includes new 
physical mechanisms. Again, the special case of distributed and 
disconnected fl uid clusters with their own physical properties is 
not included in kinematically extended continua.

Th e goal of the present study is twofold. On one hand, we rigor-
ously derive a model for residual saturated porous media based on 
fi rst physical principles. Th us, we sketch the main physical assump-
tions of our approach in detail and we outline the capabilities and 
limits of the model. On the other hand, we show how the model 
can be linked to pore-scale properties of the medium. As the model 
is two-scale by nature, we outline the upscaling procedure of a 
heterogeneous distribution of blobs/clusters of wetting fl uid (dif-
ferent in size/shape) on the level of a representative elementary 
volume (REV). Furthermore, we demonstrate how geometrical 
and material properties on the pore-scale are linked to the pro-
posed macroscopical approach.

Th e model’s development starts at the microstructure and focuses 
on the behavior of oscillating fl uid clusters. An upscaling pro-
cess conserves important information for wave propagation on 
a larger scale and connects the disconnected oscillator to the 
continuous phases. Results of exemplary residual saturated rocks 
show the capabilities and diff erences to classical models, followed 
by a discussion.

 Microscale Modeling
According to their dynamical behavior, the model embeds dis-
continuous fl uid clusters into the continuous phases as distinct 
oscillators. Many times, and especially in mixture theory, a link 
between two scales is applied for modeling purposes. In such a 
way Biot related the characteristic frequency to the microscopic 
fl ow through a duct (Biot, 1956b), and the partial and the eff ective 
density are linked via upscaling to the porosity.

Here, as well as in the examples before, an upscaling process con-
nects the physics on the microscale with the dynamic parameters 
of the system on the macroscale. In this context, the microscale 
is defi ned by the length scale of the pore space, where fl uid-fl ow 
is described by the Navier–Stokes equations. Additionally, the 
mechanical behavior of the porous solid skeleton is determined 
by common elasticity models. Th e principle of scale separation is 
applied as the macroscale is much bigger than the grain/pore size 
and acts on the assumption of a spatially homogenized system.

Foremost, a clear knowledge of the physical mechanisms on the 
microscale is essential for the development of a phenomenological 
continuum model. Only then, the derived macroscale model is able 
to capture the eff ective behavior of a unit cell (REV) including the 
microscale dynamics of clusters of wetting fl uid. Surface tension, 
density, viscosity, and geometry of the wetting fl uid are the most 
important factors on the microscale, resulting in (damped) oscil-
lations of the fl uid clusters. Th e following section gives a focused 
overview of the important physical equations describing an oscil-
lating, microscopic fl uid patch. Th e link to the macroscale is given 
by the upscaling process and an illustration of the new parameters.

The Physical Microscopic System
Th e microscopic system of interest consists of a discontinuous, 
incompressible wetting fl uid in the form of bridges, blobs, gan-
glia, or clusters embedded in a solid matrix and surrounded by a 
compressible nonwetting fl uid. In the following, we use the terms 
blob or cluster in a general meaning to account for the occurrence 
of possible geometries of the discontinuous fl uid. We will discuss 
in detail how the distinct dynamic properties of the discontinuous 
fl uid will be taken into account. In the present contribution, we 
assume isothermal conditions and describe the movement of the 
blob relative to the solid only.

Th is section describes the physical phenomena to motivate the 
dynamic behavior of an oscillating fl uid cluster, to prove assump-
tions made during the reduction to an oscillator model, and to 
support physical understanding.

Surface Tension and Contact Angle
Th e dominating eff ect on the kinematics of a single blob of wetting 
fl uid is surface tension. It results from the fact that the attraction 
forces of molecules are uniform in all directions inside the fl uid, 
but diff erent at the interface with a second material. A certain 
amount of energy is therefore needed to move a molecule from 
the interior to the boundary of the fl uid cluster and release the 
connection to the former neighborhood. Th e required energy 
for surface increase is termed surface energy or, more commonly, 
surface tension, σ, and is introduced as a tangential force per unit 
length. Naturally, it depends on the properties of both materials 
on either side of the interface.

Furthermore, σ depends only on temperature as long as the charac-
teristic length of the fl uid cluster is greater than the Tolman length, 
δTolman (Tolman, 1949). Because the following investigation only 
focuses on fl uid blobs with diameters d >> δTolman and because 
the system is treated isothermally, the surface tension is a constant 
material parameter; i.e., σ = constant.

Th e surface tension has two important consequences on the physics 
(de Gennes et al., 2004). First, the Young–Laplace equation relates 
the surface tension to a pressure diff erence, Δp, across the interface 
between two materials. Because the surface tries to minimize its 
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energy, work is done against the arising pressure diff erence and 
yields the local balance equation,

2 div( )p HΔ = σ =−σ n   [1]

where H is the mean curvature and can be expressed in terms of the 
divergence of the normal vector, n, on the surface. Second, Young’s 
equation determines the contact angle, Θ, at equilibrium at the 
contact line of three materials (i.e., two fl uids and one solid) when 
all three surface tensions balance by

solid|fluid1 solid|fluid2
eq

fluid1|fluid2
cos( )

σ −σ
Θ =

σ
 [2]

In addition, the contact angle can be used instead of those sur-
face tensions that are aff ected by the solid. Th is simplifi es matters 
because measurements and experimental data are mostly provided 
in the form of surface tension between liquids and liquid/gas and 
contact angles between fl uids and solids. Moreover, the movement 
of the solid is insignifi cantly infl uenced by surface tension. Th ere-
fore, the solid can be reduced to its infl uence on Θ.

Balance EquaƟ ons and Boundary CondiƟ ons
Inside the wetting fl uid, the continuity equation holds as well as 
the Navier–Stokes equations. Th e interface between the wetting 
and the nonwetting fl uid is infl uenced by the pressure of the non-
wetting fl uid, pn, and additionally by the pressure diff erence due to 
surface tension, σ. Th e interface between the solid and the wetting 
fl uid can exhibit a no-slip condition for pinned oscillations, or it 
can be a wetted wall leading to a shear stress depending on the 
relative velocity between the two media. For the interface between 
the nonwetting fl uid and the solid, a no-slip condition is usually 
assumed while the infl uence of the solid on the blob of wetting 
fl uid is reduced to the contact angle, Θeq, at equilibrium (Eq. [2]).

The Microscopic Oscillator
According to the physical mechanisms summarized above, the 
restoring force in an oscillating fl uid blob is caused by surface 
tension. A movement of the blob away from the equilibrium posi-
tion of minimal energy results in a change of the blob geometry. 
Th e increased surface or the changed curvature and the result-
ing change in pressure diff erence, Δp, results in a restoring force. 
Furthermore, the movement of the blob is attenuated by internal 
viscous fl ow (viscosity μwR) and, possibly, by a sliding motion rela-
tive to the slipping walls.

Considering small displacements around equilibrium and includ-
ing inertia terms yields a single damped oscillator equation for 
the barycentric movement of a wetting blob i. If the displacement 
of the center of gravity relative to the solid’s wall, uw

i, is small, 
the momentum exchange with the solid balances the inertia term 
as follows:

2
w w w

i i i i i i
im m c+ ω + =u u u 0   [3]

In Eq. [3], miω i
2 accounts for the elastic restoring force, which 

is expressed in terms of the mass, mi, and the eigenfrequency, ωi, 
of the fl uid blob and the parameter ci represents viscous damping 
eff ects. Th e latter can also be replaced by a mass specifi c damping 
parameter di with ci = midi. Th e physical behavior of the oscillator 
and its infl uence on the physical system depends on the dimension-
less damping ratio ζi = ci/(2miωi). Overdamped oscillators (ζi  > 1) 
are dominated by viscosity and show an exponential decay without 
oscillations. Th e fastest return to equilibrium occurs for critically 
damped oscillators (ζi = 1). Th e underdamped case (ζi  < 1) still 
shows the infl uence of the stiff ness including damped oscillations 
around equilibrium. Th is distinction and its infl uence on propa-
gating waves in a residual saturated porous medium will be further 
discussed in section 4.

Upscaling Process
Because we are mainly interested in larger-scale geophysical 
applications, we consider scales much larger than the pore scale. 
Th erefore, the physical properties of disconnected blobs of wetting 
fl uid in an appropriate REV have to be upscaled and integrated 
into a macroscale continuum model.

If we sum up the microscale physics of the last sections and com-
pare it to a classical harmonic oscillator, we observe that the 
dynamic behavior can be divided into three main parts:

 • pure pinned oscillation around equilibrium

 • viscous attenuation inside of the cluster

 • (viscous) attenuated sliding motion with respect to the solid wall

As the fl uid patches transfer a wave only by connection to the con-
tinuous phases, they can store and dissipate energy by the three 
mentioned processes and infl uence dispersive wave propagation 
for those reasons. All blobs are characterized with respect to this 
behavior and determined by their inertia, damping (subsuming 
point two and three) and eigenfrequency. Th e main idea of this 
homogenization is now to account for the spatial distribution and 
the corresponding variety of blob types. Th erefore, we conserve 
information about the microscopic oscillations of the blobs and 
the heterogeneous blob distribution in the considered REV (Steeb, 
2010; Steeb et al., 2010). Th e entirety of oscillators is subjected to 
an upscaling process, but with the eigenfrequency as a diff erentiat-
ing factor. Th e eigenfrequency is used because it will turn out to 
be the important parameter for low saturated situations, when the 
system behaves diff erently from continuous, that is, viscous damp-
ing dominated ones. Th is means that a distinct averaged oscillator 
model is created for every possible eigenfrequency ωk (Fig. 1). Th e 
mathematical homogenization procedure is performed for the 
momentum balance equation. Based on the microscopical results 
above, three major assumptions are used in this process:
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1. Th e fl uid blobs exchange momentum only with the solid skel-
eton (momentum exchange 

w
k,neqp̂ ). Th is assumption results 

from the fact that the vadose zone is composed of the porous 
solid skeleton saturated with a gas (air) and a liquid. Due to 
the much lower density and much lower bulk modulus of the 
continuous gas phase, the exchange of momentum between the 
liquid and the gas phase can be neglected.

2. Th e eff ective density of the diff erent fl uid clusters is assumed 
to be constant. Because the elastic behavior of the fl uid clus-
ters is mainly determined by the restoring force of the surface 
tension, the compressibility of the wetting phase is negligible 
and included in the general oscillation modes. Furthermore, 
changes of temperature and pressure are small with respect to 
their infl uence on the density.

3. Scale separation is assumed because the wavelength λ of the 
incident wave is much larger than the characteristic size L of 
the discontinuous blobs; i.e., λ >> L. As an example, we refer to 
a typical reservoir rock (Berea sandstone). Th e lower limit of a 
fast P-wave is around cP1 ≈ 2600 m s−1. Th us, for a maximum 
ultrasound frequency of 100 kHz, the wavelength is λ ≈ 0.164 
m. Th is frequency used, for example, in laboratory investiga-
tions, is still much larger than the characteristic length scale of 
the rock microstructure, i.e., the pore size, and, therefore larger 
than the characteristic length scale L of the blobs in the pores. 
Th us, a continuum approach is valid. On the other hand, the 
frequency of 100 kHz includes the expected resonance eff ects of 
the discontinuous phase (cf. Hilpert et al., 2000). For materials 
with signifi cantly diff erent properties, scale separation has to 
be proved separately.

It has to be noted that the homogenization procedure can also 
be executed without the fi rst two assumptions, leading to more 
general results. Th is work focuses on the mentioned case, because 
it appears in many systems of the vadose zone and still allows a 
detailed characterization without unnecessary complication. A 
volume average is calculated for fl uid blobs with the specifi c eigen-
frequency ωk in the REV. Th e detailed homogenization process is 
outlined in Appendix A1 and leads to the nonequilibrium momen-
tum exchange

k w

k n k k w k k w
w

wR k
w

wR 2
s w s ,k k neqˆ( ) ( )

n

n i n c

α =

−α − − α −

ρ

ρ ω ω =

u

u u u u p
 [4]

which is balanced by the inertia forces.

Note that uw
k − us is the averaged macroscale displacement of 

fl uid blobs with eigenfrequency ωk relative to the solid skeleton. 
Besides the standard averaged quantities of displacement, eff ec-
tive density, ρwR, and volume fraction, nw, three new macroscopic 
values are introduced: ak is the volumetric portion of the discon-
tinuous wetting fl uid with a certain eigenfrequency ωk and ck is the 
corresponding averaged damping parameter due to inner viscous 
fl ow and sliding motion. (Appendix A1). Th ey allow considering 
the required microstructural information of the discontinuous 
wetting fl uid. Th is classifi cation and diff erentiation of the discon-
tinuous fl uid patches becomes important for the characterization 
of systems with very low saturation.

As we will observe later in detail, a distribution of fl uid blobs of 
diff erent sizes can be described by a set of Eq. [8], which extends 
the classical poroelastic approach.

Macroscale Modeling
Aft er upscaling the mechanical properties of the disconnected 
fl uid clusters, the continuous phases will be introduced and sub-
sequently linked to the discontinuous fl uid phase. As a result, we 
obtain the fi nal model.

General Defi ni  ons and Assump  ons
On the macroscale, a REV of residual saturated porous material is 
composed of three constituents denoted by the indices α∈ {s, n, w}: 
a continuous solid skeleton, s, a continuous nonwetting fl uid phase, 
n, and a discontinuous wetting fl uid phase, w (Fig. 1). Note that 
the discontinuous fl uid phase can also be nonwetting in the pres-
ent model. However, we focus here on a porous skeleton saturated 
with a discontinuous liquid and a continuous gas phase where the 
liquid constituent is usually the wetting phase.

The macroscale modeling approach is based on the thermody-
namically consistent theory of porous media (Bowen, 1980; Ehlers 
and Bluhm, 2002), which extends the classical mixture theory 
(Truesdell, 1957) by the concept of volume fractions. Th e volume 
fractions, nα , of the constituents ϕα are the quotients of the 
volume occupied by the constituent in the REV and the volume 
of the REV, dv; i.e., nα = dvα/dv. According to the scale separation 
principle, the REV is much bigger than the grain size, such that 
the microscale can be assumed to be homogenized with respect 
to it. Th us, we introduce the partial density, ρα = dmα/dv, and 

Fig. 1. Upscaling process from the heteroge-
neous pore scale to an oscillatoric behavior 
of the wetting blobs with diff erent eigenfre-
quencies and damping mechanisms at the 
macroscale (REV). Th e extended poroelastic 
model with the continuous solid skeleton ϕs, 
the continuous nonwetting phase ϕn and the 
discontinuous oscillators representing the 
wetting phase ϕw is depicted.
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the eff ective or true density of the constituents, ραR = dmα/dvα 
Based on the volume fractions, we introduce the porosity, φ = 1 − 
ns, and the amount of fl uid saturation, sβ = nβ/φ, with β ∈ {n, w}. 
We assume that the wetting fl uid is discontinuously distributed in 
the REV. Th erefore, considering a small perturbation around the 
equilibrium state, the wetting fl uid cannot fl ow through the pore 
space, but the single fl uid blobs can deform and are therefore able 
to exchange momentum with the solid skeleton. In the following, 
we develop a phenomenological model, capturing the main eff ects 
of propagating seismic waves through such a REV, based on the 
microscopical considerations of the section Microscale Modeling.

Con  nuous Phases
Th e mathematical framework of the continuous phases is given by 
the balances of momentum; see Steeb et al. (2010) for a detailed 
description. We consider only small perturbations around an 
equilibrium state and restrict ourselves to the linearized form 
of the balance relations. Th us, we do not have to distinguish 
between material time derivatives and local, i.e., partial time 
derivatives, :t t

α α α∂ ρ =∂ρ ∂ = ρ . Neglecting body forces, the 
local form of the momentum balance equations is given for all 
constituents, ϕα as,

ˆdiv = α α α
αρ −v T p   [5]

Besides the partial stress tensor, Tα , and the inertia forces, 
α

αρ v , the momentum of a constituent is balanced by the momen-
tum exchange term, ˆαp . Note that ˆαp denotes here the exchange 
of momentum and not the fl uid pressure, which is contained in 
the total partial stress tensor Tα . Next, we discuss this interaction 
term, ˆαp , between the constituents.

Field Equa  ons
Th e macroscale model consists of the homogenized continuous 
phases (solid and nonwetting fl uid) and the upscaled oscillators, 
describing the discontinuous blobs of wetting fl uid. Th e total 
dynamic behavior of the residual saturated mixture in the REV 
is aff ected by the momentum balance of both continuous phases, 
ϕs and ϕn, respectively, and the oscillator-type rheology of the dis-
continuous blobs.

Th e fi eld equations of the continuous phases and the diff erent 
oscillators can be combined by the momentum exchange given 
in Eq. [4] (Appendix A2). Fluid–fl uid interaction is neglected 
due to the big diff erence in density while a Darcy-type viscous 
coupling is assumed between the solid and the continuous fl uid 
phase expressed by the viscous permeability function b0 = μnRφ/ks. 
Here, we introduced the intrinsic permeability ks and the eff ective 
viscosity of the nonwetting phase μnR. A transformation to wave 
number-frequency space with a standard harmonic ansatz yields 
the corresponding eigenvalue problems for the longitudinal mode 
(index P; P-wave) and the transversal mode (index S; S-wave) of the 
displacement vector u

{ }P2( ) 0,       ,  Sj jk j− = ∈A B u   [6]

where kj are the wave numbers and (see Appendix A3)
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     [7]

Th e eigenvalue problem consists of the matrix A including complex 
densities ρ  (see Eq. [8,9]). Th e defi ned complex densities account 
for inertia (∝ ω2) and viscous eff ects (∝ ω), respectively. Matrix Bj 
includes the material parameters (A, N, S, R) that are the same as in 
Biot’s theory (Biot, 1956a; Bourbié et al., 1987; Stoll, 1989) or the 
theory of porous media (Steeb, 2010) and can be tied back to the 
intrinsic elastic properties of the continuous phases (Appendix A4).

Th e momentum balances of the oscillators relate their own displace-
ment quantities to the displacements of the solid phase. As a result, 
the fi nal system of Eq. [6] yields only two P-wave wave modes (one 
S-wave mode), which are related to the solid and the continuous 
nonwetting phase and is very similar to poroelastic models.

Th e oscillating fl uid clusters contribute to the system by interaction 
with the solid phase. Mathematically they show an impact on the 
complex densities ijρ , introduced as
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Th is determines the fi nal model and Eq. [8] shows how the oscilla-
tor rheology is able to enhance the system by a variety of oscillating 
fl uid blobs with diff erent mass (αkρw), eigenfrequency (ωk) and 
damping behavior (ck) with only one addition inside of the govern-
ing equations.

In addition, approximating the discrete distribution of oscillating 
fl uid blobs with a probability density function (PDF), α(ω), the 
sums in Eq. [8] approach integrals. ( ) [ ]start end 0: ,d d ≥α ω →  has 
to be defi ned between two positive boundary frequencies, 0 < dstart 

< dend, and has the dimension of [s]. Th e eigenvalue problem of the 
continuous case using a PDF is identical to the discrete one, except 
that the complex density,
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consists of integrals instead of sums.

It should be emphasized that the governing eigenvalue problem 
(Eq. [6] with Eq. [8] and [9]) is mathematically similar to the clas-
sical poroelastic problem where two longitudinal waves and one 
transversal wave are predicted (Biot, 1956a). Th e discontinuous 
wetting fl uid infl uences the phase velocity and attenuation of the 
P1- and the S-wave, but it does not predict any further wave modes. 
Th e mathematical reduced eigenvalue problem of the three-phase 
system results from the constitutive coupling of the displace-
ment of the solid and the blobs. Physically, no wave can propagate 
through the disconnected fl uid phase. Th e blobs may aff ect the 
attenuation or wave speed but need to transmit the wave via their 
connection to the continuous phase(s).

Solu  on of the Dispersion Rela  ons
Th e dispersion relations can be determined from Eq. [6] for a 
system with a discrete distribution of blobs of wetting fl uid or its 
approximation by a PDF. Solving the eigenvalue problem with 
respect to the squared wave numbers kj

2(ω) that are denoted as 
kj

2(ω)=: ξj(ω), j ∈ {P, S}, leads to the three mentioned wave modes 
(P1, P2, and S-waves).

Longitudinal Mode
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Transversal Mode
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Th e quality factors of the wave modes, QP1,P2, (P-waves) and QS
(S-wave), expressing the amount of intrinsic attenuation and the 
phase velocities, cP1,P2 and cS, are defi ned as

{ }
Re( )
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l l
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kQ c l
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ω
= = ∈     [12]

Results
Damping and Characteris  c Frequencies
To study the infl uence of damping of the model, we focus on a 
system with one single oscillator with damping c1 and eigenfre-
quency ω1, because this case is the most understandable. Figures 
2 and 3 show respectively phase velocity dispersion and frequency-
dependent attenuation of the P1-wave for this model. Only one 
dimensionless parameter, D, aff ects the characteristics of the P1- 
and the S-wave:

w 1 1

w wR
1 1

:
n c cD = =
ρ ω ρ ω

  [13]

Th e characteristic damping parameter D represents the relation-
ship between the two damping mechanisms of the discontinuous 
fl uid due to viscous damping with nwc1 and to the oscillation at 
ω1 with the partial density ρw, respectively. For large values of D
(log10(D) > 0.5), the phase velocity of the fast longitudinal wave, 
cP1, is qualitatively comparable to that of a classical poroelastic 
model (Fig. 2). However, the presented model exhibits a diff er-
ent damping behavior (Fig. 3) and the characteristic frequency is 
shift ed to higher values compared to a classical poroelastic model 

Fig. 2. Normalized, frequency dependent phase velocity 
HF HF

P1 P1 P1 P1/ (with lim )c c c c
ω→∞
= of the P1-wave for diff erent char-

acteristic damping parameters D of the wetting fl uid. Th e porous 
skeleton is a typical reservoir rock saturated with a continuous gas 
phase (see Table 1). Th e eigenfrequency of the blob is ω1 = 2π100 
[1/s] = 100 [Hz]. Th e Gassmann–Wood and Gassmann–Hill limit 
are given in (Mavko et al., 1998).

Fig. 3. Frequency dependent inverse quality factor 1/QP1 of the 
P1-wave for diff erent characteristic damping parameters D of the wet-
ting fl uid. Th e porous skeleton is a typical reservoir rock saturated 
with a continuous gas phase (see Table 1). Th e eigenfrequency of the 
water blob is ω1 = 2π100 [1/s] = 100 [Hz].
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(Fig. 2 and 3). If the oscillation dominates over damping (log10(D) 
< −0.1), the dispersion relation contains a distinct peak at reso-
nance frequency. In general, the characteristic frequency of the 
oscillating wetting fl uid can be described as

1w
osc w 1 w

c,osc w s
w s

, if 1

1      
1 ,    if 1

D
b

n c D
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bosc can be interpreted as a more general parameter of momentum 
interaction compared to poroelastic models, where it only accounts 
for viscous attenuation and does not account for oscillations. Over 
all, the qualitative behavior of the oscillator in the system is diff er-
ent if it is underdamped (D << 1) or overdamped (D >> 1). Still, 
a fundamental diff erence to a discrete oscillator appears (Eq. [3]): 
the damping of the oscillating fl uid blobs results in a higher critical 
frequency compared to a poroelastic model. In contrast, for a classi-
cal, damped harmonic oscillator (stiff ness c, mass m, and undamped 
eigenfrequency ω) the characteristic frequency decreases with 
increasing damping; i.e., 2 2

damped ( /2 )c mω = ω − . Th is funda-
mental diff erence is due to the viscous coupling of the oscillating 
fl uid blobs to the elastic porous solid. Although a real physical 

system consists of a manifold of diff erent blobs, which can be 
described by a PDF, this simple example illustrates the infl uential 
physical phenomena and their consequences.

We have not taken into account the eff ect of tortuosity. Further-
more, the critical frequency ωc,osc (Eq. [14]) depends on the density 
ratio ρw/ρs, which can reach higher values for highly porous mate-
rials with a large amount of residual saturation.

Comparison with Biot’s Theory
Th e presented model describes the infl uence of the continuous non-
wetting fl uid and of the discontinuous oscillating blobs/clusters of 
wetting fl uid. Th erefore, two diff erent physical phenomena appear 
in the dispersion relation. On one hand, there is friction due to the 
movement of the viscous nonwetting fl uid described by the per-
meability function, b0. On the other hand, the fl uid blobs gather 
energy when they oscillate at their eigenfrequency and dissipate 
energy due to their own intrinsic viscous attenuation. In general, 
these second eff ects are not captured in Biot’s two-phase poro-
elastic model. However, under certain conditions, a poroelastic 
model can be used to approximate the presented residual saturation 
model. Th ese conditions are satisfi ed if the energy, stored by the 
blobs’ oscillations, becomes small compared to the one of general 
viscous damping (D >> 1). Such an approximation helps to better 
understand and simplify the more complex model. Therefore, 
we compare a one-oscillator model (ω1, c1) with two alternative 
poroelastic models I and II. Th eir mathematical description can 
be found in Appendix A3.

Model I treats the continuous fl uid as the second phase of a two-
phase poroelastic system. If one is interested in attenuation eff ects 
and phase velocities in a frequency range where this continuous, 
nonwetting fl uid (gas) is dominating, it could be chosen as an 
appropriate approximation (Fig. 4 and 5). Note that this model 
is exact for the P2-mode, as this mode is not infl uenced by the 
wetting blobs.

In contrast to the fi rst model, model II accounts for the infl uence 
of the wetting fl uid (water) in case of D >> 1 (with bosc ≈ nwc1), 
meaning that the oscillations are damped by the viscosity of the 
discontinuous wetting fl uid. Th e second phase of this poroelastic 
system consists of the wetting fl uid, composing the fl uid blobs. If 
the nonwetting fl uid is a gas, its infl uence on the fi rst P- and the 
S-wave is small, and model II approximates well the residual satura-
tion model for large values of D (Fig. 4 and 5).

We have introduced both models to separate the physical attenu-
ation and dispersion eff ects of the continuous nonwetting fl uid 
from the wetting blobs. Furthermore, simpler and well-understood 
poroelastic models can highlight the characteristic properties of 
the complex three-phase model.

Table 1. Characteristic properties of a Berea sandstone saturated with 
water ϕw and air ϕn.

Material parameter

Shear modulus (skeleton) G 6.0 GPa

Bulk modulus (skeleton) K 8.0 GPa

Bulk modulus (grains) Ks 36.0 GPa

Intrinsic permeability ks 190 mD

Bulk modulus nonwetting fl uid (pore gas) Kn 131 kPa

Porosity φ 0.19

Saturation, wetting fl uid sw 0.25

Viscosity nonwetting fl uid (pore gas) μnR 17.1 × 10−6 Pa s

Eff ective density solid ρsR 2650 kg m−3

Eff ective density nonwetting fl uid (pore gas) ρnR 1 kg m−3

Eff ective density wetting fl uid (blobs) ρwR 1000 kg m−3
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Illustra  ve Example: Infl uence of a Heteroge-
neous Distribu  on of Blobs
So far, we only considered oscillating fl uid blobs with a single 
eigenfrequency. However, the presented residual saturation model 
is capable of handling a distribution of eigenfrequencies, repre-
sented by a PDF (Eq. [9]). A PDF is a better representation of the 
natural distribution of blob/cluster sizes in a REV. Th e following 
example investigates a possible water cluster distribution in Berea 
sandstone in combination with air. We assume an artifi cial lognor-
mal distribution of eigenfrequencies around a central frequency 
ω0 = 10e5⋅2π [1/s] :

( )
( ) ( ) 2 2
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02

ln ln
exp exp

4
ss

s
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  [15]

Equation [15] is depicted in Fig. 6a for diff erent values of s. Because 
the damping of the oscillating blobs and clusters of wetting fl uid 
is not only a function of the fl uid viscosity, but also of the fric-
tion at the pore walls, we assume that the damping parameter is a 
function of the size of the fl uid blobs/clusters and, therefore, of the 
eigenfrequency. Here, we assume a linear relationship,

( ) 500
2

c ω = ω
π

  [16]

Equation [16] is depicted in Fig. 6a. Th e phase velocity, cP1, and 
the intrinsic attenuation, 1/QP1, of the P1-wave are depicted in Fig. 
6b and 6c, respectively, for diff erent values of s. For a very narrow 
distribution of eigenfrequencies, the phase velocity dispersion and 
the attenuation strongly resemble the single-oscillator case with a 

Fig. 4. Normalized, frequency dependent phase velocity 
HF HF

P1 P1 P1 P1/ (with lim )c c c c
ω→∞
= of the P1-wave for the three mod-

els with log10(D) = 0.75. Th e porous skeleton is a typical reservoir 
rock saturated with a continuous gas phase (see Table 1). Th e eigen-
frequency of the water blob is ω1 = 2π100 [1/s] = 100 [Hz]. Th e 
Gassmann–Wood and Gassmann–Hill limit are given in (Mavko et 
al., 1998). For better visualization, the used material parameters ρnR

(eff ective density) and μnR (viscosity) of the gas phase are multiplied 
by a factor 100.

Fig. 5. Inverse quality factor of the P1-wave for the three models with 
log10(D) = 0.75. Th e porous skeleton is a typical reservoir rock satu-
rated with a continuous gas phase (see Table 1). Th e eigenfrequency 
of the water blob is ω1 = 2π100 [1/s] = 100 [Hz]. For better visual-
ization, the used material parameters ρnR (eff ective density) and μnR

(viscosity) of the gas phase are multiplied by a factor 100.

Fig. 6. P1-wave for diff erent distributions of blobs [α(ω) and c(ω); 
see Eq. [15] and [16]]. Th e frequency dependent phase velocity cP1 
is normalized with HF

P1 P1limc c
ω→∞
= . Th e Gassmann–Wood and 

Gassmann–Hill limit are given in (Mavko et al., 1998). Material 
parameters can be found in Table 1.
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small value of parameter D (Fig. 2 and 3). For a wider distribu-
tion of eigenfrequencies, the curves resemble the single-oscillator 
case with a larger value of D. With increasing eigenfrequency 
distribution width, the attenuation distribution widens and the 
attenuation peak decreases and shift s to higher frequencies. Th is 
can be explained by the fact that with a wider distribution of 
eigenfrequencies, more high-frequency oscillators with a larger 
attenuation contribute to the total attenuation.

 Discussion
We presented a mathematical model that determines the inter-
action of the motion of a discontinuous wetting fl uid (blob) on 
the microscale (i.e., pore scale) with the propagation of waves 
in a biphasic porous medium on the macroscale (i.e., scale of 
the wavelength). On the microscale, we described the motion 
of fl uid blobs by the equation of a damped oscillator. Th ere are 
two end-member scenarios for the motion of fl uid blobs: fi rst, if 
the damping ratio is smaller than one (underdamped) the fl uid 
blobs oscillate, and large oscillation amplitudes can occur around 
the resonance frequency. Second, if the damping ratio of the har-
monic oscillator is larger than one (overdamped), no oscillations 
and no resonance eff ects occur. In this case, the residual fl uid 
blobs act as a viscous damper that absorbs energy from the pass-
ing wave. Our results show that for both, the overdamped and 
the underdamped situation, the presence of fl uid blobs can have 
a signifi cant impact on the wave velocities. Th e magnitude of the 
resonance frequency of fl uid blobs has been investigated with 
analytical and numerical methods (Hilpert et al., 2000; Beresnev, 
2006; Hilpert, 2007), and it was shown that the resonance 
frequency strongly depends, among other parameters, on the 
assumed size of the pore space in which the fl uid blob oscillates 
(e.g., the pore itself, a connected pore channel or a microfrac-
ture). Hilpert et al. (2000) presented resonance frequencies for 
typical parameters of oil and pore size between 50 Hz and a few 
1000 Hz. Furthermore, Hilpert (2007) showed that results from 
Lattice–Boltzmann simulations agree well with the analytically 
predicted resonance eff ects and frequency.

In the fi nal analysis, the model predicts wave velocities and attenu-
ation for diff erent types of distributed fl uid patches. First of all, 
this relationship allows characterizing the system. Conclusions 
about the distribution of the discontinuous phase are possible, 
especially if most parameters of the porous material are known. 
Oft en, for example, in the vadose zone, this is the case, and only 
the varying amount of saturation and especially the eff ective char-
acteristic length of fl uid clusters are unknown. To be more precise, 
for cases of residual saturations, the current model can be used as 
the theoretical basis for the inverse analysis of the determination of 
average blob sizes. Th erefore, the identifi cation process makes use 
of the previously discussed peaks of the attenuation spectrum. Th is 
may support the prediction of immobilized fl uid by information 
about characteristic damping frequencies of remaining liquid blobs 

besides common form-locking domains (Fagerlund et al., 2007). 
Th e model can also be conducive to laboratory experiments, if 
properties like interfacial areas should be linked to measurable 
quantities of propagating waves. Th e presented theory allows one 
to combine and interpret measurements on both scales and to 
develop adequate constitutive equations.

Th ere is still an open question of whether resonance eff ects can 
be actively used in, for example, enhanced oil recovery (e.g., 
Beresnev and Johnson, 1994) or groundwater remediation (e.g., 
Reddi and Challa, 1994; Reddi and Wu, 1996). For both of the 
above-mentioned applications it is necessary to mobilize residual 
organic liquids (usually oil) that are trapped in porous media 
(e.g., Li et al., 2005). For example, Pride et al. (2008) argued that 
resonance frequencies of residual oil blobs are higher than the 
seismic frequency band of interest for enhanced oil recovery, and 
they showed results of Lattice–Boltzmann simulations suggest-
ing that oscillatory wave stimulation of reservoirs can improve 
oil recovery without resonance eff ects. It should be noted that 
in all cases, a foresighted treatment of the stimulated area has to 
be assured with respect to possible damages of the solid frame-
work due to the stimulating waves. Th e presented model may 
help to characterize or describe the behavior of such areas with 
low saturation on the basis experiments, for example, ultrasound 
tests on the lab scale.

In general, for natural situations the pore space and the distribu-
tion of fl uid blobs are heterogeneous. In our model we assume a 
certain resonance frequency of the residual fl uid blobs, based on 
data like Hilpert et al. (2000). In the future, we will apply numeri-
cal pore-scale simulations based on the fi nite element method to 
calculate the resonance frequency of heterogeneous porous media 
in a similar way as has been done using Lattice–Boltzmann simu-
lations (Hilpert, 2007). Th is technique can be applied if the pore 
space and the distribution of fl uid blobs in a natural porous rock 
can be measured with three-dimensional imaging tools, such as, for 
example, synchrotron-based X-ray tomographic microscopy (Li et 
al., 2001). Th ese results for the microscale resonance will then be 
combined with an accompanying eigenvalue analysis and will serve 
as input data for the macroscale model of wave propagation. Our 
theory predicts that the wave velocity in a poroelastic layer with a 
discontinuous wetting phase (e.g., residual liquid blobs) diff ers from 
the velocity for a continuous wetting phase. Th is prediction could 
be tested in either laboratory experiments or using so-called time-
lapse seismics, where the wave velocity of reservoirs is recorded over 
a certain time interval during production. For example, our theory 
predicts that a “full” reservoir exhibits a diff erent wave velocity than 
a reservoir containing residual discontinuous liquid blobs. Because 
the wave velocity of the reservoir changes, the refl ection coeffi  cient 
between the reservoir and the surrounding rock changes as well. Th e 
change in refl ection coeffi  cient can be predicted by our model and 
could be measured for a natural reservoir. Such changes in refl ection 
coeffi  cient due to change in fl uid content have been observed for 
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hydrocarbon reservoirs (e.g., Korneev et al., 2004) and also in reser-
voirs used for CO2 storage in the framework of CO2 sequestration 
(e.g., Rubino et al., 2011). Th e changes in refl ection coeffi  cient are 
usually explained with wave-induced fl uid fl ow eff ects (e.g., Rubino 
et al., 2011). However, the theory we presented here might better 
describe the mechanism causing dispersion, attenuation and the 
related change in refl ection coeffi  cient for reservoirs with a residual 
and discontinuous wetting fl uid phase.

 Conclusions
We presented a mathematical model that couples the microscale 
(i.e., pore scale) motion of a discontinuous wetting f luid (blob) 
with the macroscale (i.e., scale of the wavelength) propagation 
of seismic waves in a porous medium. The macroscale balance 
equations are based on the theory of porous media, and the 
microscale motion is upscaled using a homogenization proce-
dure and coupled to the macroscale equations using consistent 
momentum exchange terms. We formulated the resulting mac-
roscale equations in the same mathematical structure as the 
classical Biot equations for wave propagation in a poroelastic 
medium, and we included all terms describing the microscale 
effects in the complex densities. Three probability density func-
tions can describe and account for the variety of different f luid 
clusters with respect their distributed eigenfrequencies, mass, 
and attenuation within one additional term. This particular 
form of the equations provides a transparent way of describing 
the wave propagation phenomena investigated.

Th e presence of a discontinuous wetting fl uid on the pore scale 
has a distinct infl uence on the phase velocities of the P1- and the 
S-wave and also on the corresponding attenuation in the porous 
medium. However, the discontinuous wetting fl uid does not cause 
any additional wave modes as in continuous three-phase models, 
where waves are also transmitted by a second connected fl uid phase 
with its own compressibility and inertia.

Th e motion of the discontinuous wetting fl uid is described by the 
equation of a damped oscillator. Th e fl uid can oscillate (under-
damped) or not (overdamped) depending on the damping ratio of 
the oscillator. We derived a dimensionless parameter, D, similar 
to the damping ratio which (i) determines if wave propagation 
is aff ected by microscale fl uid oscillations or viscous damping 
and (ii) controls the characteristic frequency at which dispersion 
occurs, due to microscale processes. For fl uid oscillations, the 
dispersion curve exhibits strong variations around the resonance 
frequency whereas for fl uid viscous damping, the dispersion 
curve has a similar shape as the dispersion in the classical Biot 
poroelastic theory. Our results indicate that seismic wave propa-
gation in a porous medium can be aff ected by the presence of a 
discontinuous residual wetting fl uid, whether the residual fl uid 
oscillates or not.

 Appendix A1
Homogeniza  on of the Proper  es 
on the Microscale
Th e starting point is the exchange of momentum of one single (har-
monic) microscopic oscillator
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with its mass, mi, its eigenfrequency, ωi, the mass specifi c damp-
ing, di, and the displacement of its center of gravity relative to the 
motion of the surrounding solid material in the REV, osc wall

i i−u u . 
Moreover, a standard harmonic ansatz has been used. Summation 
over all oscillators with the same eigenfrequency ωk in one REV 
and dividing by the reference volume of the REV, dv, leads to the 
macroscopic momentum exchange for all non-wetting fl uid clus-
ters with the eigenfrequency ωk:
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We have assumed that the blobs of wetting fl uid have identical 
eff ective density, i.e., ρk

wR = ρwR. Th is allows interchanging deriv-
atives and a density weighted averaging of kinematical quantities. 
Furthermore, we assume that each point of the solid walls moves 
like the solid constituent in average

k

wall

s
i k

i

i i

i

m

m
ω =ω

ω =ω

≈
∑

∑

u

u   [A19]
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Additionally, we introduce the averaged displacement for all oscil-
lators with the eigenfrequency ωk as

k

k
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k
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i i
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ω =ω

=
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u

u

 

 [A20]

Since the infl uence of the pore-scale is determined by the diff erent 
eigenfrequencies of the blobs of wetting fl uid, the averaged mass 
specifi c damping parameter, dk, consists of the mass weighted aver-
age over all blobs of wetting fl uid of the same eigenfrequency

k
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 const.k
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osc wall
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u u
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  [A21]

Th e less these microscopic damping factors, di, diverge from each 
other, the less they deviate from the average. Th e used damping 
parameter is not mass specifi c; i.e., ck := ρk

wRdk .

 Appendix A2
Solu  on and Simplifi ca  on of the 
Corresponding Eigenvalue Problem
Th e fi eld equations of the continuous phases are extended by z dis-
tinct oscillators

s s
s s n s neq
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1 w w
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Each oscillator equation is related to its characteristic viscous 
damping behavior and to its eigenfrequency. Besides a Darcy-type 
viscous momentum exchange, n

neqp̂ , between the nonwetting fl uid 
and the solid skeleton, expressed by the viscous permeability 
function b0 = μnRφ0/ks (Biot, 1956a), the additional amount of 
momentum exchange, n

neqp̂ , appears between the solid skeleton 
and the wetting fl uid overall as well as the specifi c oscillators
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Th ese relationships for the interaction of the phases can be com-
bined with the fi eld equations to remove the unknowns p̂ . Via 
usual splitting techniques and a standard harmonic ansatz (Steeb, 

2010), the eigenvalue problem for z distinct oscillators can be 
derived from this balance of momentum as

{ }P S2( ) ,       ,  j jk j− = ∈A B u 0   [A24]

where the symmetric matrices and the displacements are given by
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with
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Since the matrices jB  have only zero coeffi  cients for the third and 
all further rows, one can write

( ){ }
k k k w 2 w k k

s k w k s

k w 2 2 w k k
k w
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i n c
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u u u

u 0
 [A27]

by executing the matrix-vector multiplication for every oscillator 
with eigenfrequency ωk. Equation [A27] represents the equi-
librium of momentum, which includes inertia terms, as well as 
friction and elastic forces. Th e latter depend on the microscopic 
eigenfrequency, ωk. If ak is non-zero, then

( )
k w 2 w k k

kk
w sk w 2 2 w k

k

i n c

i n c

α ρ ω + ω α
=−

⎡ ⎤α ρ ω −ω − ω⎢ ⎥⎣ ⎦

u u   [A28]

Replacing the unknown displacements of the oscillators by Eq. 
[A28] yields the reduced eigenvalue problem, Eq. [6] and [7], with 
only two degrees of freedom.

 Appendix A3
Poroelas  c Models for Comparison
Depending on whether the critical frequency of the fl uid blobs, 
ωc,osc, is smaller or larger than the critical transition frequency of the 



www.VadoseZoneJournal.org

continuous phase, ωn, we have to distinguish the mentioned cases, 
because the inherent fl uid phases are attenuated in a diff erent order.

Model I
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i b i b
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Model II
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 Appendix A4
Biot Parameters
In the case of a homogeneous porous medium with connected 
pores, the parameters N, A, S, R, and P are generalized elastic 
material parameters. Th ese quantities can be related to the intrinsic 
properties of the nonwetting fl uid and the solid constituent (Biot 
and Willis, 1957). Th erefore, we introduce the (dry) shear modulus 
of the skeleton, G, the (dry) bulk modulus of the solid skeleton, K, 
the bulk modulus of the grains composing the solid skeleton, Ks, 
and the bulk modulus of the non-wetting fl uid, Kn. Furthermore, 
we defi ne the eff ective porosity φR := φ + Kn/Ks(1 − φ − K/Ks) 
and the elastic parameters

n s 2 R
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n s
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2 R

2 /3 (1 / ) /
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2 
/

A N

N G

A K N K K K

S K K K

R K
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= − + −φ − φ
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φ
= +
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  [A33]
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