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SUMMARY
Low frequency spectral modifications of seismic background waves (noise) due to interaction with
partially saturated porous rocks are investigated. Non-wetting fluid drops entrapped in pores can oscillate
with a characteristic eigenfrequency. A 1D wave equation is coupled with a linear oscillator equation
representing these oscillations. The resulting system of equations is solved numerically with explicit finite
differences. The background noise is reduced to its dominant frequency (0.1-0.3Hz) which is presumably
related to surface waves generated by ocean waves. This frequency is used as the external source. The
resulting incident monochromatic wave excites the pore fluid which thereafter oscillates with its
eigenfrequency. Oscillatory energy is transferred to the porous rock which leads to an amplitude decay of
the fluid oscillation. The elastic matrix carries the eigenfrequency of the fluid oscillation in addition to the
external frequency. Fourier spectra of the solid velocity therefore show two distinct peaks: the external
frequency and the eigenfrequency of the fluid oscillation. Interestingly, such low frequency modifications
of seismic noise are observed above hydrocarbon reservoirs and the presented model is considered as one
possible explanation. Time evolution of the amplitude decay of the fluid oscillation seems to be related to
the thickness of the porous rock.
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Introduction 
The behavior of fluids entrapped in a capillary tube and in idealized pores were thoroughly 
studied in the past (e.g. Graham and Higdon 2000a,b or Dvorkin et al. 1990). In hydrocarbon 
industry the results of these studies were used to develop a new enhanced oil recovery 
technology (EOR) which is termed wave stimulation of oil production or vibratory 
mobilization (Beresnev and Johnson 1994). The basic idea is to excite oscillations of the 
entrapped oil which are strong enough for the fluid to eventually leave the pore. The present 
work does not focus on the artificially induced pore fluid oscillations but on the naturally 
occurring oscillations generated by the ever present seismic background noise. A new model 
is presented that couples an oscillation equation with a 1D elastic wave propagation equation. 
 
Coupling between pore fluid oscillations and elastic waves 

Non-wetting fluid drops entrapped in a porous rock can oscillate within the pores with a 
characteristic eigenfrequency ω0 (Hilpert et al. 2006, Beresnev 2006). Capillary forces act as 
restoring forces that drive the oscillations. For idealized pore geometry this oscillation can be 
approximated by a second order ordinary differential equation. 

 
∂2u f

∂t2 = −ω0
2u f  (1) 

Where t is time, uf the displacement of the fluid out of its equilibrium position and ω0 the 
eigenfrequency of the linear oscillation, which is calculated from material parameters 
describing the pore geometry and the fluid (e.g. surface tension and density). For frequently 
occurring physical values, ω0 is in the low frequency range (Holzner et al. 2006). Wave 
propagation in the elastic porous rock in one dimension is described by a second order partial 
differential equation. 
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Where us is the displacement of the solid, φ the porosity of the rock, ρs the density of the rock 
material, E the Young’s modulus and x the spatial coordinate. F represents any external force 
acting on the elastic porous rock. To couple equation (1) and (2) both are written in terms of 
volumetric forces. The restoring force term has to be written in terms of relative 
displacements and is treated as an addition force term acting on the elastic solid. 
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This system of equations is solved numerically using explicit finite differences on a staggered 
grid (Virieux 1986). The applied physical parameters are given in Table 1. 
 
Energy conservation and transfer 

In the introduced model four different volumetric energies can be calculated and integrated 
over the model domain. 
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Where Ekin and Eel are kinetic and elastic (strain) energies of the fluid (subscript f) and the 
solid (subscript s), respectively. Using two reflecting boundary conditions and omitting the 
external force, the total energy in the model domain, i.e. the sum of all four energies stays 
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constant over time. In the simulation shown (Figure 1) a model size of 420m and a Gaussian 
initial condition for the solid velocity was applied. The initial condition influences the time 
evolution of the different energies in that sense that at the initiation of the simulation only 
kinetic energy of the solid is present. After that, the energy is distributed between solid and 
fluid and transferred back and forth between the two media (thick black and thick red line). 
This transfer happens in the same order of magnitude as the total energy of the system. This 
suggests that the energy transfer from the pore fluid oscillations to the solid elastic medium is 
strong enough to influence the spectral content of the elastic waves. 
 

 
Table 1: Parameters used in 
numerical simulations 

Figure 1: Time evolution of different energies in the model domain. The total energy, i.e. the 
sum of all energies (green line) stays constant over time. 
 
External source and model setup 

The Fourier spectrum of a typical measurement of ambient seismic background waves (noise) 
shows a very distinct peak at around 0.1-0.3Hz (left gray bar in Figure 2). This high energy 
spectral peak is a global feature that can be measured everywhere in the world. It is 
presumably related to seismic surface waves generated by ocean waves (e.g. Aki and 
Richards 1980). In this study the seismic background noise is reduced to this dominant peak. 
The external source term in equation (3) becomes 
 ( ) ( ) ( )0, sinF x t A x t= Ω  (5) 
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where Ω=1.89 (= 0.3Hz · 2π). 
 

Figure 2: Field 
measurements of 
ambient seismic 
background noise. 
One measurement 
above (red) and one 
nearby (blue) the 
location of a 
producing subsurface 
hydrocarbon 
reservoir. Spectraseis 
campaign: Mososro, 
Mexico, 2002 

 

 

Figure 3: Model setup for numerical simulations consists of two non-
reflection boundary conditions, three receivers R1-R3 and one source S 
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The external source is applied only at one point xsource in the model domain. The model setup 
(Figure 3) for the following numerical simulations consists of two non-reflecting boundary 
conditions (Ionescu and Igel 2003), three receivers and the point source described above. The 
position of the source is identical to one of the receivers. 
 
Numerical results 

Numerical simulations were run for 120s 
physical time. Fourier transforms of the 
recorded solid velocity time signals were 
calculated for all three receivers (Figure 4). 
They all show a very distinct peak at the 
frequency of the external force at 0.3Hz, as 
expected. In addition a second peak appears in 
all spectra. It coincides with the 
eigenfrequency of the pore fluid oscillations 
ω0. The excited pore fluid oscillations are 
transferred to the elastic porous matrix. This 
transfer is strong enough that the 
corresponding frequency, the eigenfrequency 
of the oscillations is carried on top of the 
externally applied frequency Ω. Both signals 
can be measured in the solid velocity signal at 
any point of the model domain. The trough of 
the spectra at receiver R1 (blue line in Figure 
4) is an artifact of the fast Fourier transform 
(FFT) and has no physical meaning. 
 
The pore fluid oscillations are initiated by the incident monochromatic wave generated by the 
external force. While the wave itself is monochromatic, the wave front consists of all 
frequencies. Therefore the pore fluid starts to oscillate with its eigenfrequency. After the wave 
front has passed, the only externally applied frequency is Ω. Its amplitude stays constant over 
time. All other frequencies decay in amplitude over time (Figure 5). 
 

 
Figure 5: Spectra of solid velocity measured 
at receiver R1 (Figure 3) after different 
amount of time. Longest time signal is 120s, 
shortest is 3.5s. Black vertical line: 
Frequency of external force; Red vertical 
line: Eigenfrequency of pore fluid 
oscillations; Green vertical line: Frequency 
with minimum power from 1 to 3Hz = 2Hz 

 
Figure 6: Spectral amplitude decay over time 
at the eigenfrequency of pore fluid 
oscillations (3Hz) for different porous layer 
thicknesses. This amplitude is normalized 
with the amplitude at the frequency of the 
external source (0.3Hz), which stays constant 
over time. The solid velocity to calculate this 
is measured outside the porous layer. 

 
Figure 4: Fourier transforms of solid 
velocity time signals for three receivers R1-
R3 (Figure 3). Positions of receivers are 
measured from top of model domain. 
Dashed line: Frequency of external force 
(0.3Hz); Solid line: Eigenfrequency of pore 
fluid oscillations (3Hz) 
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The pore fluid continues to oscillate with its eigenfrequency and constantly transfers energy 
to the elastic porous rock. Although this frequency also decays in amplitude over time it is 
relatively higher in the spectrum (Figure 5). 
 
A second set of numerical simulations were performed. The homogeneous model setup was 
expanded with two purely elastic layers on top and at the bottom of the model. The external 
point source was applied below the porous layer and an additional receiver was added on top, 
both 7m away from the interface between porous and purely elastic layer. Several runs with a 
different thickness of the porous layer were performed. The solid velocity at the newly added 
receiver was recorded and the Fourier spectra calculated. As in the homogeneous model 
(Figure 5) the amplitude at the eigenfrequency of the pore fluid oscillation is elevated and it 
decays with time. Interestingly, this decay over time is different for different thicknesses of 
the porous layer (Figure 6). A thick porous layer creates higher amplitudes which decay 
linearly with time in a log-log-diagram. A thin porous layer creates smaller amplitudes, but 
the decay is slower until the amplitude asymptotically reaches the values for thicker layers. A 
saturation of this effect occurs at around 70m thickness of the porous layer. 
 
Discussion and conclusions 

Oscillations of entrapped fluid droplets in a porous elastic rock can be transferred to the solid. 
This transfer is strong enough that the additional frequency, the eigenfrequency of the pore 
fluid oscillations is visible in the Fourier spectrum of the solid velocity. Modifications of 
seismic background noise in the low frequency range were observed in nature above 
hydrocarbon bearing structures (Figure 2, right gray bar; Dangel et al. 2003). The physical 
explanation for these modifications is the subject of discussion (Graf et al. 2007). Among 
other phenomena, such as seismic attenuation, reflections or scattering, oscillations of pore 
fluids have to be considered as one possible explanation. First results suggest that thickness 
information of hydrocarbon bearing structures can be extracted from seismic background 
noise measurements. 
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