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Abstract 

In recent years a new method for direct hydrocarbon 
indication was developed. Studies of passive seismic data 
in the frequency range below 20Hz have shown that the 
frequency content of the ever-present geoseismic 
background noise changes above hydrocarbon 
reservoirs. Different explanations for this observation 
have been proposed. In this study, the effect of oscillating 
pore fluids on the background noise is investigated. A 
non-wetting fluid drop entrapped in a pore can oscillate 
with a characteristic eigenfrequency. Capillary forces act 
as the restoring force driving the oscillations. A 1D wave 
equation is coupled with a linear oscillator equation, which 
represents these pore fluid oscillations. The resulting 
linear system of equations is solved numerically with 
explicit finite differences. The most energetic part of the 
seismic background noise, i.e frequencies around 0.1-
0.3Hz are used as the external source. This part is 
presumably related to seismic surface waves generated 
by ocean waves. It is shown that the resulting elastic 
wave initiates oscillation of the pore fluid The oscillatory 
energy of the fluid drops is transferred continuously to the 
elastic rock matrix. In consequence the elastic matrix 
carries a second frequency, the eigenfrequency of the 
pore fluid oscillation on top of the applied external 
frequency. The presented model is considered as a 
possible explanation for the observed spectral 
modifications above hydrocarbon reservoirs. Time 
evolution of the pore fluid oscillation seems to be related 
to the thickness of the hydrocarbon reservoir. 

 

Introduction 

Spectral modifications of seismic background noise in the 
low frequency range have been observed in nature above 
hydrocarbon-bearing structures (Bloch and Akrawi, 2006; 
Dangel et al., 2003). A new method for direct hydrocarbon 
indication was developed using spectra of passive 
seismic measurements. The physical explanation for 
these modifications is the subject of current discussions 
(Graf et al., 2007). Seismic attenuation phenomena in 
poro-elastic media, reflection patterns in the subsurface, 
and phase transition effects (Suntsov et al., 2006) were 
discussed recently as possible causes. 

The behavior of non-wetting fluids entrapped in capillary 
tubes and in idealized pore spaces were thoroughly 
studied in the past (Dvorkin et al., 1990; Graham and 
Higdon, 2000a, 2000b). The main finding of these studies 
is the oscillatory movement of fluids when an external 
force is applied. The frequencies of these oscillations can 
be reasonably low. The driving force is the surface 
tension force acting on the interface between the wetting 
and the non-wetting fluid phase. The results of these 
works were used by the oil and gas industry to develop a 
new enhanced oil recovery (EOR) method termed “wave 
stimulation of oil” or “vibratory mobilization” (Beresnev et 
al., 2005; Iassonov and Beresnev, 2003; Li et al., 2005). 
The general idea of the method is to excite oscillations of 
the entrapped oil with a vibratory device. Inertial forces 
occurring with oscillations eventually are strong enough to 
overcome the capillary pressure. This way the oil drops 
are enabled to leave the pore constrictions. The method 
and many application results are reviewed in Beresnev 
and Johnson, 1994. Biot, 1962 and many following 
publications consider fully saturated porous rocks where 
no oscillations can take place. The main focus of these 
publications is to better understand the dynamics of the 
second or slow P-wave that is special feature of Biot’s 
poro-elastic theory. The work presented here focuses on 
the effect of low frequency pore fluid oscillations on 
seismic waves traveling through a porous rock. Such 
oscillations only occur in partially saturated rocks. 
Naturally induced oscillations are considered that are 
generated by the ever present seismic background noise. 
A one-dimensional two phase model is introduced that 
describes the coupling between elastic wave propagation 
and the oscillatory movement of the fluid. 

 

Methods 

Pore fluid oscillations as linear oscillations 

Various theoretical investigations showed that a non-
wetting fluid drop, i.e. oil, entrapped in a capillary tube 
can oscillate (Beresnev, 2006; Graham and Higdon, 
2000a, 2000b; Hilpert et al., 2000). Both sliding and 
pinned contact lines were considered. In both cases the 
radii of the menisci change when the fluid drop is 
displaced out of its equilibrium position. In the case of 
sliding contact lines a variable width of the capillary tube 
has to be assumed to obtain the change of radii. This 
change of radii of the menisci changes the capillary 
pressure at the corresponding menisci which leads to a 
restoring force that drives the oscillation. Hilpert et al., 
2000 demonstrated a resonant behavior of such 
oscillations and Holzner et al., 2007 showed that possible 
eigenfrequencies range down to reasonably low values 
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(<10Hz). For simplicity, oscillations of pore fluids in this 
work are approximated with a linear one-dimensional 
oscillator model with the eigenfrequency ω0. 

 2
0

f fu uω= −  (1) 

Superscript f indicates that it is a fluid that oscillates in the 
pores. uf is the displacement of the fluid and fu  is the 
second time derivative of the displacement, i.e. the 
acceleration. Considering n such oscillators the total 
kinetic energy of the fluid f

kinE  is 
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f
im  is the mass of each individual oscillator and fu  is the 

time derivative of the displacement of each oscillator, i.e. 
the velocity. Assuming non-connected pores (i.e. the 
oscillations do not interact) the total potential energy f

potE  
consists of the sum of the individual potential energies. 
The eigenfrequency of the oscillations are here assumed 
to be constant for all pores. 
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Coupling between pore fluid oscillations and elastic wave 

The pore fluid oscillations are coupled to a one-
dimensional linear elastic solid. A sketch of the 
rheological model is given in Figure 1. The beam on the 
right hand side represents a one dimensional linear 
elastic solid which is coupled to a one dimensional linear 
oscillator (left hand side). The oscillations influence the 
behaviour of the elastic solid and vice versa. A detailed 
description of the coupling between solid and fluid 
subsystems is given in the Appendix. In the continuous 
limit of an infinite number of pore fluid oscillators the total 
kinetic energies Ekin and total potential energies Epot of the 
fluid and solid subsystems is given by 
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Superscript s denotes the solid part of the system. The 
discrete function uf and its time derivatives (Equation (2) 
and (3)) become continuous functions. l is the total length 
of the one-dimensional model. φ is porosity of the elastic 
rock and ρf and ρs is fluid and solid mass density, 
respectively. S the filling level of the pores and is a 
number between 0 and 1. σs is the stress in the elastic 
rock and εs is the strain, i.e. spatial derivative of solid 
displacement. In the elastic solid subsystem stress is 

related to strain with Young’s modulus as the factor of 
proportionality. 

 
s

s s uE E
x

σ ε ∂
= =

∂
 (5) 

Equations (4) only consider the solid and fluid 
subsystems. When the filling level of the pores S is 
smaller than 1, a third phase is present in the system. 
Here it is assumed to be a gaseous phase. Both its kinetic 
and potential energy is small compared to the fluid and 
solid phases and is neglected. For the continuous two-
component system Hamilton’s variational principle can be 
applied to the Lagrangian functional L (Fetter and 
Walecka, 1980). 
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T and U are the total kinetic energy ( f s
kin kinE E+ ) and the 

total potential energy ( f s
pot potE E+ ) of the coupled system, 

respectively. t1 and t2 are two points in time. L is the 
Lagrangian density and has the dimension of energy per 
unit length. Using correct boundary conditions for the 
variation in space and time and assuming small 
variations, Equation (6) splits into two equations for the 
solid and fluid. 
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Superscript i replaces superscript s (solid) or f (fluid). 
Integration by parts is carried out omitting the resulting 
boundary terms. Variations δui arise as common 
multipliers for all terms. Since the variations are arbitrary, 
the remaining terms have to be equal to zero. The 
resulting equations are the Euler-Lagrange equations for 
the continuous two-component system. 

 0i i iu dt u dx ε
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The Lagrangian density L (Equation (6)) is substituted 
into the Euler-Lagrange equations. The final equations of 
motion result. 
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First Equation (9) is almost identical to a linear one-
dimensional oscillator equation (Equation (1)). It differs in 
the sense of its formulation in terms of relative 
displacement and averaged density (Sφρf). The left hand 
side together with the first term of the right hand side of 
the second Equation (9) is similar to a one-dimensional 
wave equation (Szabo, 1956). It is also written in terms of 
the averaged density ((1-φ)ρs). The additional term on the 
right hand side is also written in terms of relative 
displacement and links the fluid and the solid motion. 
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Figure 1: Schematic rheological model for the coupling 
between elastic deformation and pore fluid oscillations. 
The elastic bar with Young’s modulus E on the left hand 
side is coupled with a linear oscillator with an 
eigenfrequency of ω0. Two displacements have to be 
considered individually in this model, the displacement of 
the elastic subsystem us and the displacement of the 
oscillatory fluid subsystem uf. 

 

Numerical methods and setup 

Using Equation (5) and two kinematic equations for uf and 
us Equations (9) can be expanded to five first order linear 
partial differential equations. They are discretized using 
the finite difference method on a one-dimensional 
staggered grid (Virieux, 1986). Discretization in time is 
formulated explicitly with a predictor-corrector method. 
Boundary conditions can be rigid (all velocities equal 
Zero) or non-reflecting (Ionescu and Igel, 2003). The 
model setup used for the first set of simulations is shown 
in Figure 2a). Three receivers are placed in a 
homogeneous two-component model that is described by 
Equations (5) and (9). An external source can be applied 
at the position of receiver R1. The source affects the solid 
matrix directly. The fluid phase is only affected indirectly 
through the coupling terms in Equations (9). The second 
Equation (9) becomes 

 ( ) ( )
2

2
021

s s
s f f su uE S u u F

t x x
φ ρ φρ ω
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The Fourier spectrum of a typical measurement of 
ambient seismic noise shows a very distinct peak at 
around 0.1-0.3Hz (left gray bar in Figure 9). This high 
energy spectral peak is a global feature that can be 
measured everywhere in the world. It is presumably 
related to seismic surface waves generated by ocean 
waves (Aki and Richards, 1980). In this study the seismic 
background noise is reduced to this dominant peak. The 
external source term in Equation (10) becomes 

 ( ) ( ) ( )0, sinF F x t A x t= = Ω  (11) 
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Ω= 1.89 (= 0.3Hz · 2π). The external source is applied 
only at one point xsource in the model domain. The 

eigenfrequency of the pore fluid oscillations is fixed to 
3Hz throughout the model domain according to Holzner et 
al., 2007. Physical parameters used in the simulations are 
given in Table 1. 

  
Figure 2: a) Homogeneous 1D model setup for numerical 
simulations consists of three receivers R1-R3 and one 
source S. The position of the source is identical with the 
position of receiver R1. The whole system is described by 
the coupled system of Equations (9). The lower and upper 
boundaries can be rigid (zero displacement) or non-
reflecting. b) Layered 1D model setup. The middle layer is 
described by the coupled system of Equations (9), the 
upper and lower layers are linear elastic. The lower and 
upper boundaries are non-reflecting. 

Symbol Value 
ω0 18.85 (=3Hz · 2π) 
ρf 800 kg m-3 
ρs 2800 kg m-3 
E 2 · 1010Pa 
φ 0.3 
S 0.9 
Ω 1.89 (=0.3Hz · 2π) 

Table 1: Parameters used in numerical simulations. 
Parameters not listed in this table are explained in the 
text. 
 

Numerical results 

Energy conservation and transfer 

The introduced model is run with the setup shown in 
Figure 2a) with two rigid boundaries. No source is 
applied, but a Gaussian bell curve in space is used as the 
initial condition of the solid velocity. The four energies in 
the system, Equations (4) are calculated. Figure 3 shows 
the time evolution of the four energies (thin lines). Also, 
the total fluid energy and the total solid energy are shown 

a) b) 
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together with the total energy of the system (thick lines). 
The energies of the solid and fluid phase of the system 
always add up to constant total system energy, i.e. the 
total energy is conserved. At the same time energy is 
transferred back and forth between the solid and the fluid 
subsystem. The beginning with zero energy of the fluid 
represents the initial conditions. That the oscillations of 
the different energy contributions over time happen with 
similar amplitudes shows that the pore fluid oscillations 
influence the behavior of the solid phase considerably. 

 
Figure 3: Time evolution of the four different energies in 
the system. The total energy, i.e. the sum of all energies 
(thick dashed line) stays constant over time. Individual 
energy contributions are transferred between fluid (gray 
lines) and solid (black lines) subsystems. 

 

Homogeneous simulations 

Numerical simulations are run for 120 seconds physical 
time with the model setup shown in Figure 2a) with two 
non-reflecting boundary conditions and the external 
source applied to the solid phase. At all three receiver 
positions the Fourier spectrum of the recorded solid 
velocity is calculated and plotted in Figure 4. They all 
show a very distinct peak at the frequency of the external 
force at 0.3Hz, as expected. The applied wave travels 
through the model domain with a constant frequency. In 
addition a second peak appears in all three spectra at 3 
Hz. It coincides with the eigenfrequency of the pore fluid 
oscillations ω0. This indicates that the elastic wave excites 
the pore fluid oscillations whose movements are indeed 
transferred back to the elastic matrix. This transfer is 
strong enough that the corresponding frequency peak is 
carried on top of the externally applied frequency Ω. Both 
frequencies can be measured in the solid velocity signal 
at any point of the model domain. The trough of the 
spectra at receiver R1 (black spectra) is an artifact of the 
fast Fourier transform (FFT) and has no physical 
meaning. Figure 5 illustrates the second frequency that is 
carried on top of the external frequency. Figure 5a) shows 
a short time interval of the velocity measurement at 
receiver R2. The fluid velocity (dashed grey line) seems to 
be identical to the solid velocity (solid black line). The 
difference between the two velocities is shown in Figure 
5b). It is clear that they are not identical. The difference is 
characterized by the eigenfrequency of the pore fluid 

oscillations. This frequency is measurable and appears in 
the Fourier spectrum (Figure 4). For ongoing physical 
time the Fourier spectrum changes. Figure 6 shows the 
time evolution of the Amplitudes of both peaks in the 
spectrum (0.3Hz: gray line, 3Hz: black line). The peak at 
0.3Hz in the spectrum stays constant over time. On the 
other hand the peak at 3Hz decreases over time. 

 
Figure 4: Fourier spectra of solid velocity time signals for 
three receivers R1-R3 (Figure 2a) after 120 seconds 
physical time. Two non-reflecting boundary conditions 
and sinusoidal external source acting on the solid phase 
at position S are applied. Dash-dotted vertical line: 
Frequency of external force (0.3Hz); Solid vertical line: 
Eigenfrequency of pore fluid oscillations (3Hz). The 
trough around 4.6Hz in the spectra of receivers R2 and R3 
is an artefact of the fast Fourier transformation and has 
no physical meaning. 

 
Figure 5: a) Section of time signals of absolute fluid 
(dashed grey line) and solid (solid black line) velocities 
recorded at receiver R2. b) Same section of time signal of 
the difference between fluid and solid velocity. The 
difference between the two signals shows the 
eigenfrequency of the pore fluid oscillations (ω0 = 3Hz) 
and the frequency of the external source (Ω = 0.3Hz). 
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Layered media 

In a second set of numerical simulations the model setup 
was changed according to Figure 2b). Below and on top 
of the homogeneous model a purely elastic layer is 
added. This model setup allows the external source and 
receiver R1 and R3 to be outside the porous medium. 
Since the model is one-dimensional and the additional 
layers are linear elastic, neither the distance of receivers 
R1 and R3 from the porous layer nor the distance of the 
source S from the porous layer change the recorded 
signal. They only add a time shift to the signal without 
changing its character. No change in the Fourier 
spectrum is expected. Therefore the distance of receivers 
R1 and R3 from the porous layer and the distance of the 
source S from the porous layer are chosen to be small 
(7m) to optimize the numerical resolution. Several 
numerical simulations with different thicknesses of the 
porous layer were performed. At receiver R3 a Fourier 
spectrum is calculated out of the recorded solid velocity 
after different simulation lengths. Figure 7 shows the 
evolving Fourier spectrum for the case of a 50m thick 
porous layer. As in the homogeneous case (Figure 4) the 
amplitude of the peak at 0.3Hz stays constant over time 
while the amplitudes of all other frequencies, including 
3Hz, decrease. This decrease of the spectral amplitude at 
the eigenfrequency of the pore fluid oscillations is 
different for different thicknesses of the porous layer. 
Figure 8 shows the time evolution of the ratio between the 
spectral amplitudes of the 3Hz-peak and the 0.3Hz-peak. 
A thick porous layer initially creates higher amplitudes of 
the spectral peak at 3Hz. This amplitude decreases 
linearly with time on double-logarithmic axes. A thin 
porous layer initially creates lower amplitudes of the 
spectral peak at 3Hz. The decrease with time is smaller 
until the amplitude asymptotically reaches the values for 
thicker layers. A saturation of this effect occurs at a 
thickness of the porous layer of around 70m. 

 
Figure 6: Double logarithmic representation of time 
evolution of the spectral peaks at 0.3Hz (gray line) and 
3Hz (black line). The spectra are calculated after different 
simulation lengths with the solid velocity time signal at 
receiver R2. While the 0.3Hz-peak stays constant over 
time the 3Hz-peak decreases in amplitude. 

 
Figure 7: Spectra of solid velocity time signal at receiver 
R3 of the layered model for a porous layer thickness of 
50m. Different spectra are calculated after different 
simulation lengths with gray spectra representing short 
simulations. Longest time signal is 120s, shortest is 3.5s. 
Dash-dotted vertical line: Frequency of external force; 
Solid vertical line: Eigenfrequency of pore fluid 
oscillations. 

 
Figure 8: Double-logarithmic representation of time 
evolution of the amplitude ratio between the 3Hz-peak 
and the 0.3Hz-peak in the spectra. Different colors 
represent different porous layer thicknesses with thinner 
porous layers as gray curves. Spectra are calculated with 
the solid velocity time signal at receiver R3 of the layered 
model. 

 

Discussion and Conclusions 

The introduced Equations (9) to model the coupling 
between pore fluid oscillations and elastic wave 
propagation are linear. Still, the monochromatic external 
source (Equation (11)) acting on the solid phase excites 
the pore fluid to oscillate with its eigenfrequency. These 
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oscillations are initiated by the incident of the elastic 
wave. While the wave itself is monochromatic, the wave 
front contains all frequencies, including the 
eigenfrequency of the pore fluid oscillations. After the 
wave front has passed, the pore fluid continues to 
oscillate with its eigenfrequency ω0 and constantly 
transfers energy to the elastic porous matrix. This results 
in a decrease of the amplitude of the oscillations. The 
energy transfer from the oscillating pore fluid to the elastic 
solid matrix is strong enough to change the frequency 
content of the elastic wave. Similar modifications of the 
seismic background noise have been observed above 
hydrocarbon-bearing structures (right gray bar in Figure 
9). Oscillation of oil entrapped in pore constrictions must 
be considered as a possible explanation for these 
spectral modifications. 

 
Figure 9: Field measurements of seismic background 
noise. One measurement above (red) and one nearby 
(blue) a proven oil reservoir. Source: Spectraseis survey 
for Petrobras, Potiguar Basin, Brazil, 2004 
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