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Even though it is possible to efficiently reduce the
mean amplitude during dynamic unfolding (see

vellow panel), a complete flattening is not possi-
ble (see figures below). This is due to two factors:

e The geological cross-section (i.e., the inital

3
g model for the simulation) is in parts not well
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constrained or not well constructed.

e Physical processes that take place in nature are
not included in the numerical model.
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e The first point can be due to sparse or inaccurate geological
data or due to the cross-section construction method itself.

0\ e The second point includes various deformation processes, such as

brittle fracturing, non-volume conserving processes (e.g., solution-
precipitation, compaction), or 3D-out-of-plane deformation

Mean Amplitude Decrease = 56.9%

Mean Amplitude Decrease = 65.3%

Dynamical unfolding simulations after a horizontal shortening of 11.0% (=kinematical shortening estimate).
Upper: Newtonian rheology, interfacial slip (thick black line in lower figures in the yellow panel)

Lower: Power-law viscous rheology with n=3, interfacial slip (grey dashed line in left figure in the yellow panel)
Colourbar: Quantitative rating of cross-section where dynamic unfolding works well (green) and less good (red)

If dynamic unfolding works well in some and less good in other areas, the numerical results can be used for

e Quality control of cross-section construction: Problematic areas in dynamic unfolding results may correspond
to parts in the cross-section, which are not well constraied by data or badly constructed. Identifying these
Mechanically strong parts helps improve the cross-section construction.

™ Mechanically weak
- e Planning future field campaigns: Problematic areas in dynamic unfolding results may exhibit complex geologi-
cal deformation processes. Identifying such areas helps define interesting targets for future field studies.
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