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Abstract

Characteristic low frequency seismic signals have been observed in areas where hydrocarbon reservoirs are present. A
possible interpretation is the excitation of hydrocarbon related resonances. Basic models of an oscillating liquid filled por-
ous medium are investigated. Synthetic spectra of the ab initio Navier–Stokes equations and of basic linear and nonlinear
one-dimensional oscillators show characteristic features of measured spectra when oceanic background waves around 0.1–
0.2 Hz are assumed to be the external driving force.
� 2007 Published by Elsevier B.V.
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1. Introduction

Hydrocarbon microtremor analysis (HyMAS) [1,2] is an innovative seismic spectroscopy technology iden-
tifying the hydrocarbon content of geological structures by analyzing low frequency background wave signals.
Hydrocarbon indicating information is extracted from spectral modifications of naturally occurring back-
ground waves in the 0.1–20 Hz range interacting with hydrocarbon bearing porous structures. Similar obser-
vations have been made at more than 15 sites worldwide [3–8].

The first consistent report on low frequency seismic measurements and analysis to investigate the hydrocar-
bon content of geological formations was given in 2001 by Dangel et al. [3]. A linear relationship between the
observed signal and the total thickness of hydrocarbon layers was established by various measurements that
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were compared to well log data mainly in the Middle East. Earlier on in 1993 other findings of low frequency
seismic signals were related to oil-saturated layers by Goloshubin et al. [4]. They analyzed experimental cross-
hole seismic data from a field in West Siberia and found very low frequency (10 Hz), very low velocity (300 m/
s) and high amplitude ‘‘slow wave’’ signals inside oil-saturated layers.

Similar potentially hydrocarben related low frequency seismic spectrum modifications have been observed
by several groups recently. Al Dulaijan et al. [5] have reported the occurrence of such signals during a the com-
parison of different novel exploration techniques applied in the Rub Al-Khali Desert of Saudi Arabia while
Rached, Suntsov et al., Akrawi and Kouznetsov et al. [6,7] found similar occurrences in Kuwait, Russia
and the Arabian Peninsula.

From recent land surveys in Brazil [8] typical HyMAS data of a weak and a strong signal indicating low and
high hydrocarbon potential are shown in Fig. 1.

A general approach towards an explanation of such behaviour is the phenomenological interpretation as a
driven linear or nonlinear oscillator [9].

The straight forward approach to describe such observations is the general equation for a one-dimensional
nonlinear oscillator
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with space variable x, frictional damping term b/m, resonance frequency x0, driving acceleration amplitude F/
m and driving frequency X, which already leads to a remarkably good fit as displayed in Fig. 1. The input
excitation F/m at the ocean wave peak frequency of X = 2p Æ 0.22 Hz generates a second harmonic at about
Spectrum (calculated) produced by a driven nonlinear one-dimensional oscillator which compares well with the measured spectrum
vertical ground motion velocity component. For comparison the maximum values of the spectra are superimposed and set to a value
to one. Parameters for the calculations according to Eq. (1) are: b/m = 2.0 s�1, x0 = 2 Æ p Æ 2.6 Hz, F/m = 0.8 m s�2,
Æ p Æ 0.22 Hz, A=x2

0 ¼ 1:2� 104 s�2, B=x2
0 ¼ 4� 105 s�2 m�1. The insert shows the measured signal after suitable signal to noise

proving data processing. The trace on top indicates low and the trace at the bottom high hydrocarbon potential. The measurement
ns were about 2 km apart. The peak at about 4.5 Hz is due to a nearby artificial noise source. Note that the frequency separation of
arly visible fine structure wiggles corresponds to the frequency of the oceanic wave peak which is likely to be caused by nonlinear
tions. Also the higher harmonics of the driving frequency are visible in the measured spectrum.
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0.44 Hz. The resonance frequency, which was intentionally set to x0 = 2p Æ 2.6 Hz, has been widened by the
creation of sum and difference frequencies between X and x0 and by the damping term b/m.

In order to better understand the meaning of such formal results and their limits, the oscillator parameters
and the conditions of the natural environment of a hydrocarbon reservoir have to be related. Two basic poro-
mechanical models often used in literature serve as examples [10]. For the linear model (Fig. 2), a bi-conical
pore geometry (Fig. 3) is used while a spherical pore shape (Fig. 12) represents the nonlinear case.

2. Linear one-dimensional oscillator model

The bi-conical pore geometry has the advantage of providing a linear spring constant for the restoring force
which is independent of the dislocation of the pore fill along the z-direction. In equilibrium, the capillary forces
which are proportional to the length of the oil/rock contact line (ORCL) balance each other.

For small displacements of the liquid, the lengths of both ORCL change in such a way that the related cap-
illary forces Fz = F+z + F�z always add up to a restoring force which enables oscillations.

Neglecting gravity, which would mainly shift the equilibrium position, and assuming nearly filled pores, an
oscillation frequency according to the one-dimensional oscillator model can be estimated.

The spring constant
Fig. 2.
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General description of a driven linear one-dimensional oscillator along the x-direction with its second-order differential equation
sonance response function.



Fig. 3. Schematic representation of a simple bi-conical pore geometry which enables low frequency oscillations of the contained liquid
along the z-direction. The oil/rock contact line (ORCL) or triple phase line where capillary forces occur is formed between the oil and
water phases and the rock material. (a) liquid in equilibrium: the capillary forces F+z in positive and F�z in negative z-direction balance
each other; (b) Situation after a small displacement of the liquid in the positive z-direction: F+z has decreased and F�z has increased
compared to the equilibrium. The resulting restoring force drives the liquid back along the negative z-direction towards its equilibrium
position; (c) same as (b) with dislocation in the negative z-direction.
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The observed value of m = 3 Hz is compatible with realistic values of the relevant parameters given in Table 1.
Fig. 4 shows, as an example, how the sharp-peaked spectrum of a single oscillator approaches the wider

observed shape as a function of the width ‘‘sigma’’ of the assumed log-normal parameter distribution.
3. Navier–Stokes equations

In order to verify the approximations used in the one-dimensional oscillator model, the Navier–Stokes
equations which are mainly based on fundamental ab initio concepts such as conservation laws, constitutive
equations and boundary conditions for the liquid filled bi-conical pore are numerically solved.
3.1. Code

TransAT [11] is a finite-volume multi-physic code solving the multi-fluid Navier–Stokes equations. The
code uses multi-block, structured meshes along with a message-passing parallel algorithm. The grid arrange-
ment is collocated and can handle general curvilinear grids. Multiphase flows are computed using the particle
tracking approach, or interface tracking techniques. The flow is modeled as one fluid having variable material
properties according to a phase indicator function which distinguishes the gas phase regions from the liquid
Table 1
Common parameter values

Pore radius, r 1 · 10�3 m
Half distance between pore throats, h 5 · 10�3 m
Surface tension of oil, c 10�3 N m�1

Density of oil, qL 8 · 102 kg m�3

Viscosity, l 6 · 10�4 kg s�1 m�1

Low viscosity, l 6 · 10�5 kg s�1 m�1

Resonance frequency, x0 3 Æ (2 Æ p) Hz



Fig. 4. Numerical simulation of the superimposed spectrum of 1000 linear harmonic oscillators for three different parameter distributions:
(a) all oscillators with normalized resonance frequency at x0 = 1 and damping term b/m = 0.1; (b) both resonance frequency and damping
vary according to a log-normal distribution with sigma = 2.84; (c) both resonance frequency and damping vary according to a broad log-
normal distribution with sigma = 3.47.
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phase. Both the level-set and the volume-of-fluid interface tracking methods (ITM) can be employed in the
code to track evolving interfaces.

3.2. Transport equations

The incompressible heat and fluid flow equations expressed within the single-fluid formalism take the fol-
lowing form
r � u ¼ 0 ð5Þ
o

ot
ðq � uÞ þ r � ðq � u � u� rÞ ¼ F s þ F b þ F tl ð6Þ
where q is the density of the liquid pore fill, u is the velocity vector of the pore fill and the RHS terms in the
momentum equation (Eq. (6)) represent the surface tension expressed by Eq. (8) below, body forces and the
triple-line wall contribution respectively and r = s � p Æ I is the Newtonian viscous stress tensor with its share
component sw parallel to the wall and its pressure induced component p Æ I (p: pressure, I: identity matrix).
Isothermal conditions are assumed.

3.3. The level-set method

In our simulations, the oscillation of oil in one pore is simulated using a two-phase flow description of the
oil–water system inside the pore. The description uses the level-set (LS) method to define the interface between
the two fluids and to combine the dynamics of the two phases to get a consolidated Navier–Stokes equation.
Because the simulation captures the dynamics of forced oscillation in one pore – in principle – we are not sim-
ulating porous media.
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In the LS method, the interface between immiscible fluids is represented by a continuous function u, rep-
resenting the distance to the interface which is positive on one side and negative on the other. The two fluids
can now be identified by the location of the interface representing the zero level. The LS evolution equation is
Fig. 5.
and r =
pore d
ou
ot
þ u � ru ¼ 0 ð7Þ
Material properties such as the density, the viscosity, and the thermal conductivity are updated locally based
on u and smoothed across the interface using a smooth Heaviside function. The fact that u is a continuous
function across the interface helps to determine the normal vector n to the interface, and thereby the surface
curvature j required for the determination of the surface tension,
F s ¼ cjdsn ð8Þ
where c is the surface tension of the fluid and ds is the Dirac delta function located at the interface.
3.4. Simulation setup and results

The bi-conical pore is setup as an axisymmetric body of revolution as shown in Fig. 5. The pore is initialised
with oil in the center and water at the edges. A sinusoidal forcing is applied to the flow domain of given ampli-
tude (0.05 mm) and frequency. The simulation is run for a fixed number of cycles and the motion of the center-
of-mass of the oil is calculated. By comparing the amplitude and phase of the oscillation with the imposed
oscillation, the amplitude and phase response of the system is computed. The Navier–Stokes equations and
the level-set advection equation are numerically solved using the third-order Runge–Kutta explicit scheme
for time integration. The convective fluxes are discretised using the higher-order bounded HLPA scheme.
The diffusive fluxes are discretised using the second-order central scheme.

Two pores with center diameter of 3 mm and 1 mm were simulated for a range of frequencies (0.5–10 Hz).
Further refinement in the frequencies was performed near the observed resonance frequency for the 3 mm
diameter case. Fig. 6 shows the amplitude and phase response for the 3 mm diameter pore. Resonance is
observed at approximately 1 Hz for a viscosity of l = 6 · 10�4 kg s�1 m�1. For a lower viscosity
(l = 6 · 10�5 kg s�1 m�1) the resonance frequency is shifted to approximately 1.7 Hz. As expected the phase
angle undergoes a 90� shift at resonance. For the 1 mm pore, resonance is observed at approximately 4.6 Hz
(Fig. 7).
3.5. Forces acting on the oil drop

The different forces acting on the oil drop at two different frequencies (1 Hz and 3 Hz) for the 3 mm pores
are shown in Figs. 8a and b. The forces acting on the oil drop are schematically shown in Figs. 5, namely the
wall pressure and viscous shear, the inertial force, the triple line force at the ORCL, the surface tension force,
and the imposed sinusoidal oscillation. Different forces have different amplitude and phase relationships to the
Bi-conical pore geometry with forces acting on the oil drop. For the calculations two pore shapes with of r = 1 mm, h = 1.5 mm
3 mm, h = 4.5 mm were used. The external force was adjusted for a non-resonant displacement of A = 2 · 10�6 m for the 1 mm

iameter and of A = 2 · 10�5 m for the 3 mm pore diameter.



Fig. 6. Amplitude A (mm) and phase response U (rad) for 3 mm pore diameter. Viscosity l = 6 · 10�4 kg s�1 m�1 and
l = 6 · 10�5 kg s�1 m�1.

Fig. 7. Amplitude A (mm) and phase response U (rad) 1 mm pore diameter. l = 6 · 10�4 kg s�1 m�1.
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imposed oscillation. The wall pressure is typically in phase with the imposed oscillation, whereas the viscous
shear lags the imposed oscillation.

The variation of the magnitudes of the different forces with respect to the imposed frequency normalized by
the imposed oscillation magnitude is shown in Fig. 9. It can be observed that the forces generally reduce with
increasing frequency. They also show a small increase/decrease in amplitude near the resonance frequency
(approximately 1 Hz).
4. Comparison of calculated pore oscillation behaviour to a linear harmonic oscillator

Fig. 10 shows the frequency dependence of amplitudes and phases calculated by the numerical Navier–
Stokes model (NSM) and the linear harmonic oscillator model (LHOM) for three cases: pore of 1 mm radius



Fig. 8. (a) Forces acting at 1 Hz on oil drop and (b) forces acting at 3 Hz on oil drop. The little bursts are numerical oscillations due to the
contact line moving from one finite volume to another. Special treatment is done only on one control volume for the dynamic contact line
model.

Fig. 9. Variation of forces with respect to frequency. The forces add up to one considering that the triple line force is a negative
contribution and the surface tension force is an internal force of which the resulting net force is represented by the triple line force.
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and 3 mm radius with two different viscosities. For each case two fits are indicated, one for good agreement in
the maximum amplitude region and one for good agreement at frequencies far below and above resonance.
The oscillator parameters for each case and fit are listed in Table 2.

The expressions for the response of a linear harmonic oscillator are
AðxÞ ¼ F 0

m
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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for the phase with excitation acceleration F 0

m , resonance frequency x0 and damping b
m.

For a cylindrically shaped pore the frictional term can be deduced from the Hagen–Poiseuille law of flow
resistance through a capillary. There the frictional force FR is proportional to the volume flow dV

dt according to



Fig. 10. Amplitudes and phases calculated by the Navier–Stokes model (NSM) and the linear harmonic oscillator model (LHOM) for a
pore of 1 mm radius (left) and 3 mm radius (middle: same viscosity as 1 mm pore; right: lower viscosity). Open circles: calculated by NSM;
fit A dashed line: LHOM fitted for good agreement around the resonance frequency; fit B dashed line: LHOM fitted for good agreement at
the wings; solid line: average of fit A and fit B.

Table 2
Harmonic oscillator parameters which approximate the pore oscillation behaviour

1 mm pore radius 3 mm pore radius 3 mm pore radius low viscosity

Fit B Fit A Average Fit B Fit A Average Fit B Fit A Average

Excitation (10�2 m s�2) 3 1.8 2.4 12 1.7 6.85 5.5 2.5 4.0
Resonance frequency (Hz) 5.5 4.6 5.05 1.7 1.1 1.4 1.85 1.75 1.8
Damping (s�1) 2.0 1.2 1.6 1.0 0.18 0.59 0.7 0.32 0.51
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F R ¼ A � Dp ¼ A � dV
dt
� R ð11Þ
with the capillary cross section A and the flow resistivity
R ¼ 8ll
pr4

ð12Þ
On the other hand, for the oscillator the frictional force is
F R ¼ b
dz
dt

ð13Þ
Combining Eqs. (11)–(13) leads to
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In case of a tapered tube, this value has to be corrected for the energy required by the radial displacement of
the liquid flowing through the capillary. However, due to the symmetric tapered shape of the bi-conical pore
this correction cancels out for a full oscillation cycle of the fluid along the z-direction, but the average radius
has to be adjusted to about r/2 for a nearly saturated pore. The dependence of the frictional term of the linear
harmonic oscillator in the case of a saturated bi-conical pore can therefore be written as
Table
Compa
Navier

1 mm
Reso
Fric

3 mm
Reso
Fric

3 mm,
Reso
Fric
b
m
¼ 32l

r2qL

ð16Þ
The comparison of the resonance frequency and the frictional term between the ‘‘straight forward’’ linear
oscillator (LO), where parameter values from Table 1 have been used, and the average fit of a linear oscillator
to the Navier stokes calculations (LONS) using the same parameter values is shown in Table 3.

The resonance frequencies of the LONS are consistently about a factor of 2 larger than for the LO. How-
ever, they compare well within the same order of magnitude also for different pore sizes. Therefore Eq. (4)
appears to be a good approximation which could even be improved by an ‘‘empirical factor’’ of 2.

Regarding the frictional term, the approximation (Eq. (16)) gives the right order of magnitude, but for the
LONS the dependence on viscosity is much less than for the LO.
5. Observation of the signals at the surface

In order to explore the feasibility of the explanation by pore level oscillations, the following approximation
is made.

Assuming frequency dependent forces in the order of a fraction c of the capillary forces for each pore, the
measured velocity at the earth surface due to the coherent oscillations of the pores in the hydrocarbon con-
taining porous layer of thickness d at depth D as indicated in Fig. 11 can be estimated.

The total force FT represents the coherent sum of the fractional forces of the n pore oscillators
F T ¼ nF z; n ¼ 3gdA
2r2ph

; F z ¼ c � c � 2pr sinðxtÞ ð17Þ
This force accelerates the mass M = D AqR of the overlaying rock material according to Newton’s law
F T ¼ M
d2z
dt2

ð18Þ
which leads to a measurable velocity at the earth surface on top of the reservoir of
dz
dt
¼ � n

Mx
c � c � 2pr cosðxtÞ ¼ �vz cosðxtÞ ð19Þ
3
rison of resonance frequency and frictional terms between the linear oscillator (LO) and the average fit of a linear oscillator to the
–Stokes calculations (LONS)

LO LONS

nance frequency (Hz) 2.76 5.5
tional term b/m (N s m�1 kg�1) 24 3.2

nance frequency (Hz) 0.53 1.4
tional term b/m (N s m�1 kg�1) 2.7 1.2
low viscosity
nance frequency (Hz) 0.53 1.8

tional term b/m (N s m�1 kg�1) 0.27 1.0



Fig. 11. Simple model for the occurrence of low frequency seismic signals due to pore liquid oscillations. At the surface a seismic sensor
measures the surface motion.
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The value
Table
Comm

Depth
Hydro
Densit
Porosi
Fractio
vz ¼
n

Mx
c � c � 2pr ¼ 3gdcc

rhxDqR

ð20Þ
is compatible with typical measured values of the vertical component of the ground velocity of about 10�6 m
s�1 for the realistic parameter values listed in Table 4.

The parameter c represents the fraction of the capillary force which is assumed to contribute to the total
force which produces measurable signals at the surface. The value of c has to be compared to the frequency
dependent forces calculated by the Navier–Stokes equations (Fig. 9): the ‘‘triple line force’’ and the ‘‘inertia’’,
which are the same forces phase shifted by half an oscillation period (Fig. 8). The difference of these forces
between ‘‘on’’ and ‘‘off’’ resonance is about 10% of the total force. The value of c = 10�2 therefore represents
a rather conservative estimation which could be chosen closer to c = 10�1.

6. Nonlinear oscillation due to a spherical pore shape

As the initial example has shown the explanation of the fine structure wiggles shown in Fig. 1 may be
explained by the occurrence of nonlinearity in the above model by allowing for a more general pore shape,
e.g. spherical as shown in Fig. 12. This defines a more general, nonlinear spring constant in a natural way.
Such nonlinearities actually provide the more common case in nature ([10] and references to Oh and Shatterly
(1979) and Payatakes et al. (1980) therein).

The nonlinear spring constant depending on the filling level z0 is given by
f ¼ d

dz
ðc2prðzÞÞ ¼ 2pc

d

dz
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which leads to the nonlinear one-dimensional differential equation
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dt2
þ b
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þ 2pcðz0 þ zÞz

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q ¼ F 0
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4
on parameter values for reservoir structure

of hydrocarbon containing formation, D 103 m
carbon layer thickness, d 20 m
y of rock material, qR 2 · 103 kg m�3

ty, g 0.2
n of maximum capillary force at ORCL = 2 Æ p Æ r, c 10�2



Fig. 12. Schematic representation of a spherical pore geometry which enables low frequency oscillations of the contained liquid along the
z-direction. Similar to the bi-conical case shown in Fig. 3, the liquid surface boundary forms the oil/rock contact line and the restoring
capillary forces drive the liquid back along the z-direction towards its equilibrium position after an initial dislocation. While the bi-conical
pore geometry leads to a linear spring constant for the restoring motion, the spherical pore geometry results in a nonlinear spring constant
that depends on the dislocation and therefore leads to a nonlinear restoring motion.
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The filling-level dependent oscillation mass and frequency are
Fig. 13
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The synthetic spectra obtained from the nonlinear model are displayed in Fig. 13 for different filling levels. The
single peak spectrum of the linear case splits up into several peaks which are separated by the driving oscil-
lation frequency.
. Spectrum of nonlinear oscillations in a spherical pore for different oil saturations. Pore liquid filling levels z0 are between 0.3 and
e frequency spacing of the multiple peaks is a typical feature of nonlinear systems and corresponds to the frequency of the driving

tion at 0.1 Hz, which also produces its own overtone at 0.2 Hz. For demonstration reasons, the damping was set to zero which leads
per peaks.



Fig. 14. Development of the spectrum of nonlinear oscillations in a spherical pore during 600 s for filling level z0 = 0.9 of the pore liquid.
The frequency spacing of the multiple peaks is a typical feature of nonlinear systems and corresponds to the frequency of the driving
oscillation at 0.1 Hz. Natural oscillation frequency of pore: m = 3.527 Hz, mass of liquid in pore m = 2.64 · 10�5 kg.
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The frequency of the spectrum shifts toward larger values as the oil saturation increases. Note that these
features need a certain transient time to build up, as is demonstrated in Fig. 14.
7. Discussion

The observed oscillations seem to commonly appear in the low frequency range between 1 and 10 Hz at all
investigated sites independent of the hydrocarbon reservoir thickness. This favours the microscopic oscillator
model compared to a reservoir thickness dependent macroscopic resonator model. In order to obtain suffi-
ciently low resonance frequencies the ‘‘spring constant’’ has to be small which requires a low value of the sur-
face tension c, a large oscillating mass and a large value of the aspect ratio h/r. Surface tension and interfacial
tension values in pore media are not well investigated [10] but can be orders of magnitude lower than the lit-
erature values of water (73 · 10�3 N/m) or crude oil (20 · 10�3 N/m) due to contamination, increased temper-
atures and contact of the oil to water as an additional liquid medium in the pores. Water wetted pore surfaces
also lower interfacial tension and avoid pinning effects of the ORCL [10]. A large oscillating mass requires
large pore diameters or the coupling of several smaller pores.

The assumption of coherent superposition of frictional forces requires either spatially coherent excitation
(e.g. by the strong long-wavelength oceanic wave component of the geological background noise spectrum) or
a coherent coupling mechanism between the pores either through the liquid or the solid phases. In the case of
low frequency oceanic wave excitation this assumption is well satisfied. The coupling of the pore level oscil-
lations to the rock material and the propagation of the seismic wave to the surface is presently under inves-
tigation. Also other effects that may create similar signals, e.g. such as trapping of surface waves in near
surface geological structures [12] are the subject of extensive numerical modeling.
8. Conclusions

It has been shown that the phenomenological model of a driven one-dimensional linear and nonlinear oscil-
lator can provide a natural interpretation of characteristic spectral features empirically attributable to hydro-
carbon reservoirs. The basic requirement for oscillations, the presence of a restoring force on the pore scale,
has been derived from first principles using Navier–Stokes Equations. Good agreement between the numerical
results and the observations is achieved for realistic parameter values using the dominant part of the ever pres-
ent background wave spectrum, the seismic wave field around 0.1–0.2 Hz caused by oceanic waves, as the driv-
ing force for the oscillations.
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