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A B S T R A C T

The study of seismic anisotropy has benefited from the wide application of the electron backscatter diffraction
(EBSD) technique that provides complete information on the crystallographic and shape preferred orientations in
2D sections. Classical effective medium theory statistically approximates the seismic anisotropy based on the
crystallographic preferred orientation, but the shape preferred orientation is often idealized as e.g. parallel
layering or oriented inclusions. Due to higher demands in precisely quantifying seismic anisotropy in natural
rocks and taking full advantage of the EBSD technique, dynamic wave propagation methods have received broad
attention. This paper presents the MATLAB program E-Wave based on a novel approach to directly use EBSD
data for 2D numerical wave propagation simulation. The complete mechanical formulation and numerical
benchmarks with simple model setups are presented. The E-Wave program allows straightforward EBSD data
import, finite-difference simulations with one-button click, and automatic result analysis. The E-Wave program
can be a helpful and independent tool in future works to shed light on the relationship between microstructures
and seismic anisotropy, and contribute from the modelling perspective to studies in seismology, geodynamics
and rock physics.

1. Introduction

Natural minerals are heterogeneously distributed in rocks and often
elastically anisotropic, which results in the velocity of seismic waves to
be macroscopically distinct along different propagation directions. This
property called seismic anisotropy is typically related to and controlled
by the deformation of rocks. For example, seismic anisotropy offers a
unique opportunity to investigate the past and present-day flow direc-
tion in the mantle and crust (e.g. Kneller and van Keken, 2007; Long
and Becker, 2010; Lloyd et al., 2011; Skemer and Hansen, 2016;
Almqvist and Mainprice, 2017). Seismic anisotropy is caused by two
main reasons: 1) the crystallographic preferred orientation (CPO) of the
anisotropic crystals and 2) the shape preferred orientation (SPO) of
irregularly aligned minerals with different geometry (Mainprice, 2015).
Classical quantitative methods to study seismic anisotropy involve
different ways to statistically average the elastic moduli, e.g. the fre-
quently used Voigt and Reuss bounds (e.g. Mavko et al., 2009). To this
end, the effective medium theory is used assuming that either the
elastic strain (Voigt bound) or stress (Reuss bound) is homogeneous in
space. The arithmetic average of Voigt and Reuss bounds (Hill average)
is often taken to approximate the seismic anisotropy (Hill, 1952). Other

averaging methods are established for particular material geometries,
for example the Backus solution for periodically stacked (transversely)
isotropic layers (Backus, 1962; Schoenberg and Muirt, 1989), or the
Hashin–Shtrikman bounds for oriented spherical/elliptical inclusions in
a homogeneous matrix (e.g. Willis, 1977; Brown, 2015). However, most
statistical averaging approaches focus on the effect of CPO while the
SPO is idealized (e.g. parallel layers, oriented inclusions). It has been
emphasized that real rocks are heterogeneous and may contain irre-
gularly shaped fractures or inclusions that are filled with different
materials (e.g. fluid, glass, melt) (Anderson et al., 1974; Schoenberg,
1995). These heterogeneities are not easily captured by effective
medium theories, and pose difficulties when evaluating seismic aniso-
tropy as a function of both crystallographic and shape preferred or-
ientations. Different from the effective medium theory, the asymptotic
expansion homogenization (AEH) finite-element (FE) method takes into
account the microfabric characteristics of CPO and elastic grain inter-
actions by calculating the bulk elastic moduli considering grain shape
distributions (e.g. Naus-Thijssen et al., 2011; Vel et al., 2016). How-
ever, as no seismic wave propagates through the FE mesh, the effect of
elastic scattering at grain boundaries is not evaluated. The elastic
scattering effect may become significant when the ultrasonic
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wavelength is similar or shorter than the grain size, and is not easily
evaluated with many modelling techniques (Arntsen, 2007).

Electron backscatter diffraction (EBSD) has become a standard
technique to map mineral phases, (sub)-grain boundaries, and crystal-
lographic orientations in a 2D section (e.g. Adams et al., 1993; Bascou
et al., 2001; Humphreys, 2001; Lloyd et al., 2011; Austrheim et al.,
2017; Dunkel et al., 2017). A novel numerical model has been devel-
oped to use the measured CPO and SPO information for modelling
dynamic wave propagation (Zhong et al., 2014). This approach uses the
digital EBSD data to generate a numerical finite-element grid and si-
mulates the dynamic propagation of seismic waves through the mea-
sured 2D EBSD-section. Recently, this novel approach has received at-
tention because of the greater demand in precisely quantifying seismic
anisotropy and the prevalent use of the EBSD technique (Skemer and
Hansen, 2016; Almqvist and Mainprice, 2017). However, the work in
Zhong et al. (2014) focuses on various applications combining the EBSD
technique, laboratory ultrasonic transmission experiments, and the
numerical solutions of seismic anisotropy in a case study of one parti-
cular rock type (i.e., Finero peridotite, Italy). Unfortunately, this EBSD-
based dynamic wave propagation model is not readily used in relevant
studies due to the complications in tensorial rotations, EBSD data im-
port and programming with the finite-element method. Therefore, this
paper presents a MATLAB-based GUI program (E-Wave) that allows
easy EBSD data import, numerical simulations based on a simpler finite-
difference (FD) method, and processing/visualization of numerical so-
lutions. The mechanical formulation and background for the EBSD-
based wave propagation model are provided and the E-Wave program is
benchmarked with analytical solutions in two simple model setups. The
ultimate goal is to present E-Wave as a convenient and robust program
for EBSD users to take the full advantage of the EBSD-technique in
studying seismic anisotropy.

2. Methods

The wave propagation model is formulated with the momentum
balance equations and the elastic constitutive relation (Hooke's law). A
4th order tensor rotation is introduced to rotate the stiffness tensor from
the sample reference frame into the crystal reference frame. The stag-
gered-grid FD-technique in space is used to solve the system of equa-
tions with an explicit FD time-marching technique.

2.1. Governing physics

The generalized linear Hooke's law is expressed using the Voigt
notation:
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The stiffness tensor Cij is defined by the local elastic property and
orientation. The strain tensor can be computed using displacements in
the three principle directions (x-y-z):
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As the crystals' geometry in z direction is not available on the EBSD
section, we consider the wave to propagate only in x-y plane and the
wave-front is planar in z direction. The wavefront can be curved in the
x-y plane. In this case, all the partial derivatives of displacement with
respect to z (∂

∂
u
z
i ) are zero. The momentum balance equations are ex-

pressed as:
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where üi is the second derivative of ui with respect to time (i.e., ac-
celeration). It is noted that although the modelling domain is 2D, three
displacements and accelerations are calculated due to the anisotropy
effect. Considering the wave to propagate in the x-y plane, shear wave
splitting can also be modelled with displacements in both the x-y plane
and in z direction. Because we assume a plane wave in z direction, the
partial derivatives of stress with respect to z are assumed to be zero. Eq.
(2) can be substituted into Eq. (1) to express stress as a function of
displacement, and the result can be substituted into Eq. (3) to form a
closed system of three equations for three unknowns (ux , uy and uz).

2.2. Rotation of stiffness tensor

The stiffness tensor Cij depends on the local mineralogy and crys-
tallographic orientation. At each pixel in the EBSD data, the Euler an-
gles following the Bunge convention (ϕ Φ ϕ, ,1 2 in the order of z-x-z
rotation) are available to characterize the orientation of the crystal
(Bunge, 1993). The stiffness tensor at every pixel must be rotated ac-
cording to these Euler angles. The 4th order tensor rotation is expressed
as:

=C R R R R Cijkl
R

im jn ko lp mnop (4)

where the Einstein summation is used, Cmnop is the original 4th rank
stiffness tensor defined in the sample coordinate system, and Cijkl

R is the
rotated stiffness tensor in the crystal coordinate system (Fig. 1). The 4th
rank tensor Cijkl

R is equivalent to Cij as defined in Eq. (1) without em-
ploying the Voigt notation. In this case, R is the 2nd order rotation
matrix defined as:

This rotation matrix is composed of three single rotation matrices
( =R R R R1 2 3) following the order of z-x-z rotations.

Fig. 1. EBSD section containing crystals with different symmetry and orienta-
tion. The zoomed-in pixel schematically shows the rotation of a crystal's stiff-
ness tensor from sample reference frame (a//x, b//y, c//z) to crystal reference
frame (actual orientation in rock). The directions of the three axes follow the
right-hand rule.
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The stiffness tensor at every pixel in the EBSD section is computed
based on the mineralogy (stiffness tensor in sample reference frame)
and crystallographic orientation (Fig. 1). The rotation of the stiffness
tensors places them into their actual orientation based on the EBSD
measurements. Direct FD-simulation can thus be performed on the di-
gital EBSD section detailed in the next section.

2.3. Numerical FD stencil

The FD model is built with a staggered-grid stencil (Fig. 2). FD
discretization is applied for both time (explicit) and space (Frehner
et al., 2008). The density, displacement and acceleration are located on
the nodal points (yellow dots in Fig. 2). The crystallographic orienta-
tions measured by EBSD, and hence the stiffness tensors, are located at
the center of each element (blue boxes in Fig. 2) surrounded by four
nodal points. According to Krüger et al. (2005), the stiffness tensor Cij

located at the center of an element must only correspond to one of the
neighboring media at grain boundaries and must not be averaged. This
is advantageous for EBSD-based wave propagation simulations because
the positions of the stiffness tensor naturally coincide with EBSD
measurements, which are done in a square grid, and no spatial aver-
aging is needed. Thus, no special treatment on grain boundaries is re-
quired. In case the modelling domain is rotated, all the physical prop-
erties on the rotated domain are found based on the nearest neighbor on
the original unrotated domain.

Because density is assigned according to the indexed mineral
phases, arithmetic averaging is required to move density from the EBSD
measurement points (center of each element; blue boxes in Fig. 2) to the
nodal points (yellow dots in Fig. 2; except at boundary nodes). In each
explicit FD time step, the strains and stresses are also arithmetically
averaged to coincide with the positions of the stiffness tensor for using
Hooke's law (Eq. (1)) (Frehner, 2009, Appendix B). The arithmetic
averaging for strain is shown in Fig. 2. The computer program is fully
vectorized to save computation time.

To ensure numerical stability in the explicit FD time-marching
technique, the von Neumann stability criterion is used, where the time
increment is a function of grid distance divided by the maximal P-wave
velocity (Vp max, ) (Virieux, 1986; Bohlen and Saenger, 2006). The pro-
gram automatically searches for Vp max, among all the present phases
based on the given stiffness tensors. The computed explicit time in-
crement is further divided by 4 to increase numerical accuracy. In-
itially, a Ricker wavelet is applied to the left edge of the model that
propagates toward the right edge of the model. The displacement is
expressed as:
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where A is a pre-factor, l is the input dominant wavelength (the
dominant frequency is V πl/ 2 ). Neumann boundary conditions are
applied for all displacement components around the modelling domain.
Practically, the displacements at the nodal points on the boundary of
the modelling domain are updated explicitly based on their interior
neighbors in each time step. Seismic waves will be reflected when en-
countering the boundaries of the EBSD section. The input elastic energy
is thus not dissipated at the boundary since no absorbing boundary
conditions are defined.

3. E-Wave program

A MATLAB program (E-Wave) is provided here to directly perform
dynamic wave propagation simulations on a measured EBSD section.
The E-Wave program interface is shown in Fig. 3A. The code uses the
built-in functionality of the MATLAB graphic user interface (GUI). The
program is named EWave.exe and can be executed on Windows com-
puters with a double click. Before executing the code, MATLAB 2017
and Microsoft Excel software (for data import) must be pre-installed. If
MATLAB license is not available, users are recommended to visit the
MathWorks Web site (http://www.mathworks.com/products/
compiler/mcr/index.html) to download the free MATLAB Runtime
version 9.2, 64-bit. This allows users to execute the E-Wave program
without a full MATLAB installation.

3.1. Data import

The EBSD data for the E-Wave program is saved in a Microsoft Excel
file following the example template (sample ZAP205) in the

Fig. 2. Finite difference stencil. Blue boxes (element center) correspond to the
locations of EBSD measurements and hence stiffness tensors. All displacements,
ui, and accelerations, ai, are located on the nodal points (yellow dots). For nodal
points, green circles indicate boundary conditions and red circles indicate
where displacements are updated every explicit time step. Spatial derivatives of
displacements are calculated at positions marked by green crosses. These de-
rivatives are arithmetically averaged to place strain at the element center fol-
lowing the green arrows. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)
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supplementary materials (data.xlsx). For illustration purposes, only 15
pixels are shown in Fig. 4. The required information includes the x-y
spatial coordinates of each pixel in micrometer, the Euler angles fol-
lowing Bunge convention (z-x-z rotation) in radian, and the phase index
given as integers starting from zero (zero is often defined as non-in-
dexed phase). The stiffness tensor and density of each phase are saved
in individual spreadsheets with names corresponding to the phase index
(Fig. 4). The density and stiffness tensor must be filled in the colored
area in each spreadsheet (Fig. 4) for all the phases present in the EBSD
data. Thereby, the stiffness tensor has to be written as Cij using the
Voigt notation (see Equation (1)).

One potential data import problem occurs when MATLAB attempts
to load an Excel file with Microsoft Office language setting other than
English. Even though the data format is correct, a “Data loading error”
may occur. To fix this problem, in the Excel software go to “File”, open
“Options”, then “Add-ins”, select the “Manage: COM Add-ins”, and un-
check all the items. Meanwhile, the directory to save the software must
be set in English for successful execution.

3.2. Input area

The E-Wave program can be executed with a double click on the
EWave.exe icon. Once started, click the “Import Data” button and

choose the Excel data file. When the data is loaded, the phase map will
be plotted on the screen. The model parameters need to be defined:

• Model Center: The x-y coordinates of the center of the rectangular
modelling domain. It must be within the EBSD data domain as
shown after data import.

• Model Size: The width and height (in x and y directions) of the
rectangular modelling domain. The size must be chosen so that the
modelling domain is within the EBSD data domain even after rota-
tion of the modelling domain (see point below).

• Rotation Angle: The clockwise rotation angle of the rectangular
modelling domain. If left empty, the rotation angle is set to zero by
default. Users can systematically vary this value to change the di-
rection of the incident seismic wave, which always propagates from
the left to the right side of the rectangular modelling domain.

• Rotate CPO: Not only the shape orientations of grains are rotated;
the crystallographic orientations of the grains also need to be ro-
tated. Check this box to ensure that the crystallographic orientations
of all the pixels are rotated following the “Rotation Angle”. Uncheck
this box to keep all the crystallographic orientations fixed as given
by the original Euler angles in the EBSD data. By comparing the
seismic velocity as a function of rotation angle with and without
checking this box, users can separate the influence of CPO and SPO

Fig. 3. (A) E-Wave program interface. The left panel is the input area to set up model parameters and the right panel is the display area. The example shows wave
propagation through a 2D EBSD section of sample ZAP205 from Finero peridotite, Italy (Zhong et al., 2015). The toolbar contains zoom-in, zoom-out, pan, and data
selection. The “H” button leads to the help menu. (B) Mineral phases of the used sample ZAP205. A fracture is oriented perpendicular to the wave propagation
direction. (C) Olivine inverse pole figure. MTEX toolbox 4.5.0 is used for plotting the phase map and the inverse pole figure (Mainprice et al., 2011).
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on seismic anisotropy.

• Wavelength: The wavelength of the incident Ricker wavelet (see Eq.
(9)). By systematically varying this value, users can investigate how
seismic anisotropy is influenced by the incident wavelength (or
equivalently the dominant frequency).

• Buffer length: In order to guarantee a smooth source wave and avoid
disturbance from the boundary, two virtual aluminum “buffers” are
attached to both the left and right sides of the modelling domain.
This parameter controls the length in x direction of the buffers.

• Wave Mode: Define the initial displacement direction. Vp for dis-
placement in x direction (resulting in a P-wave), Vs1 for y direction
(resulting in an S-wave polarized parallel to the y axis, i.e. within
the EBSD section) and Vs2 for z direction (resulting in an S-wave
polarized parallel to the z axis, i.e., in and out of the EBSD section).

• Run Time: The total running time of the model in microseconds. If
this box is left empty, the model will continue running until the
“Stop” button is clicked.

• Snapshot: Choose the time interval in microseconds to plot the dis-
placement field in the display area. The number of time increments
per snapshot is rounded; so the actual time interval may not be
exactly equal to the chosen value.

• Smooth: In case of sharp contrasts in elastic constants and density at
grain boundaries, numerical instability may occur that causes the
model to fail after a long propagation time. The Smooth function
allows the user to replace the elastic constants and density at each

grid by the arithmetic mean of the neighboring four grids. The de-
fault is set as “0” to switch it off. By increasing the number of
smoothing, the above procedure is repeated.

• Save Image: Check this box to output the displacement field as . jpg
file for every snapshot. A wave propagation animation can be pro-
duced using the exported images.

After data import, three buttons will appear:

• Plot: Click this button to visualize the EBSD phase map and the
rectangular modelling domain set by the parameters above. A run-
time suggestion is displayed once this button is clicked. Depending
on the chosen wave mode, this time suggestion is derived using the
averaged bulk or shear modulus to compute seismic velocity as-
suming isotropic elasticity for all mineral phases. The displayed time
suggestion can help users to find a rough estimate of when the
wavefront reaches the right receiver (a factor of 1.25 is multiplied to
guarantee that the wave can pass through the right receiver after the
time suggestion).

• Go: Click this button to start the numerical simulation of dynamic
wave propagation.

• Stop: The simulation stops if 1) “Run Time” is reached or 2) this
“Stop” button is clicked. Once stopped, the seismic velocity will be
displayed. The velocity is computed using the model length and the
time interval between the maximal displacement recorded by the

Fig. 4. Example of E-Wave program data file. (A) EBSD data format. The x-y coordinates follow the 2D EBSD scanning order. There is no need to differentiate either x
or y coordinate increases first. (B) Physical parameter format. The density (Rho) is in light green and the stiffness tensor in blue following the Voigt notation (see
section 2.1). All the existing phases in (A) must be present in a separate spreadsheet containing their corresponding physical parameters. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of this article.)
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left and right receivers (solid black and red lines in Fig. 3). Users can
also manually select the arrival time of seismic wave using the
zoom-in and data selection functions in the toolbar (Fig. 3). After
clicking “Stop” or “Run Time” is reached, a. txt file called “result.txt”
is produced containing three columns listing time, and the left and
right receiver time signals for users to post-process the results in
their software of choice. The two receiver time signals correspond to
the arithmetic average of the displacement along the entire left and
right receiver lines, respectively.

Once the simulation is stopped, users can modify the model para-
meter and start another simulation without restarting the program.

3.3. Display area

The display area contains two plot regions (Fig. 3).

• Top plot: When EBSD data is imported, the phase map will be vi-
sualized here with a colorbar indicating the phase index. After set-
ting the model parameters (e.g. model size, rotation angle), click the
“Plot” button to visualize the modelling domain. During numerical
simulations after clicking the “Go” button, the displacement field
will be visualized simultaneously. The pink-to-blue colorbar in-
dicates the amplitude of the corresponding displacement depending
on the selected wave mode (x displacement for Vp, y displacement
for Vs1 and z displacement for Vs2).

• Bottom plot: The displacement signal is visualized for both the left
and right receivers denoted by black and red color, respectively. The
arithmetic average of the corresponding displacement is calculated
along the two receiver lines.

4. Benchmarks

Two numerical benchmarks are performed: 1) wave propagation
through a single olivine crystal and 2) wave propagation through two
periodically stacked isotropic layers.

4.1. Benchmark for single crystal

Olivine is a common anisotropic mineral in the upper mantle that
has orthorhombic symmetry. In this benchmark, the elastic stiffness
tensor of olivine is rotated systematically covering a discretized hemi-
sphere and the E-Wave model simulates seismic waves propagating in
each rotation direction. The resulting Vp, Vs1 and Vs2 are projected onto
equal-angle stereonets and compared to the analytical solutions com-
puted using the Christoffel tensor (Christoffel, 1877). The Christoffel
tensor in this benchmark is computed with the MTEX toolbox 4.5.0 in
MATLAB (Mainprice et al., 2011, see Appendix). The applied stiffness
tensor for the single olivine crystal (Fo90) is taken from Abramson et al.
(1997).

The benchmark results (Fig. 5) show that the analytical and nu-
merical solutions of seismic velocity match very well in terms of the
velocity patterns in the stereonets. The numerical error in percent is
defined as ×− 100v v

v
num ana

ana
, where vana is the analytical solution and vnum

is the numerical solution. The error is< 0.2% for all three seismic wave
modes. The grid resolution is 5000 in x direction and 10 in y direction
to save computation time because the displacements do not vary in y
direction. This benchmark suggests that the rotation of the crystal-
lographic orientation is correct, and the accuracy of the numerical so-
lution is sufficient to capture the seismic anisotropy of a single crystal.

4.2. Benchmark for layered rock

The model setup of the second benchmark is a periodically stacked

Fig. 5. Benchmark results of a single olivine crystal for seismic velocity. The top row shows analytical solutions computed with the Christoffel tensor and the middle
row shows numerical solutions computed with the E-Wave model. The bottom row shows the error in percent ( ×− 100vana vnum

vana
) where vana is the analytical solution

and vnum is the numerical solution. In order to achieve sufficient grid resolution for the stereonet projection, 90000 rotations are calculated using the Euler su-
percomputer cluster in Lugano, Switzerland.
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medium with two types of isotropic layers (Fig. 6). In this case, the
medium macroscopically behaves transversely isotropic (Backus,
1962). The stiffness tensor for the effective medium can be ar-
ithmetically averaged following the Backus solution provided in the
Appendix. The seismic wave velocity in different directions can thus be
computed using the Backus solution.

Here, the numerical benchmark is performed in this model setup by
propagating seismic waves either parallel or perpendicular to the layers
(Fig. 6). The two isotropic layers (phase-one and phase-two) have
physical properties listed in Table 1. The wavelength of the incident
Ricker wavelet is at least 10 times longer than the thickness of the
periodic layers to ensure that no significant reflections occur during
wave propagation. This ratio has been tested by Arntsen (2007) to as-
sure that the resulting seismic velocity does not suffer from observable
elastic scattering.

The good match between numerical and analytical solutions in this
benchmark shows that the E-Wave model can correctly simulate a
perfectly layered rock. This implies that SPO can be satisfactorily si-
mulated in our model. Combined with the previous benchmark to tes-
tify the crystallographic rotation (for CPO), natural system with het-
erogeneous and anisotropic mineral aggregates measured by the EBSD
technique can be modelled.

5. Concluding remarks

The MATLAB program E-Wave is developed that allows EBSD data
import, FD numerical simulations of dynamic wave propagation, live
result visualization and processing. The complete mechanical for-
mulation and benchmarks are provided for the FD numerical model.
The E-Wave program is simple to use by EBSD users without back-
ground knowledge in numerical programming. A few potential appli-
cations of the E-Wave program can be: 1) studying the magnitude and
origin of seismic anisotropy by rotating the wave propagation direction
with or without rotating the CPO, 2) investigating the elastic scattering
and frequency influence of incident wave on seismic anisotropy, and 3)
quantifying the seismic influences of inclusions and fractures in EBSD
sections. E-Wave will assist future studies in seismic anisotropy under
the prevalent application of the EBSD technique. The E-Wave program
(and a stand-alone MATLAB script for the FD modelling part) and an
example data file for sample ZAP205 (Finero peridotite, Ivrea Verbano
zone, Italy) are available on Github (https://github.com/
xinzhong0708/EWave.git). Users can directly paste their EBSD data
into the Excel template.
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Appendix

A1. Christoffel tensor

The Christoffel equation (Christoffel, 1877) is used to characterize the elastic wave velocity in an anisotropic medium based on the elastic
stiffness tensor Cijkl.

Fig. 6. Benchmark for two periodi-
cally layered rocks. The physical
properties are tabulated in Table 1.
(A) Schematic model setup for waves
propagating perpendicular (red) or
parallel (blue) to the layering. (B)
Results of seismic velocity as a func-
tion of phase proportion of phase one.
The numerical solutions (num) are
denoted by open circles and dia-
monds using the E-Wave model. The
analytical solution (ana) of Backus
(1962) is denoted by solid lines. (For
interpretation of the references to
color in this figure legend, the reader
is referred to the Web version of this
article.)

Table 1
Phase properties for benchmark model. Both phases are isotropic. The stiffness
tensor is computed using the first and second Lamé constants, λ and μ, re-
spectively. The phase colors correspond to the periodic layers in Fig. 6.

Phase-one (blue) Phase-two (green)

λ 70 GPa 10 GPa
μ 90 GPa 30 GPa
ρ 2500 kg/m3 3500 kg/m3
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= ⇀⇀T C n nik ijkl j l (A1)

where ⇀nj and ⇀nl are the propagation unit vector in Cartesian coordinate frame. The Einstein summation is used here for matrix multiplication. The
eigenvalues (λ λ λ, ,1 2 3) of the Christoffel tensor are related to the three seismic wave velocities:
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=
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Therefore,Vp,Vs1, andVs2 are obtained for a single crystal in any arbitrary direction. In the benchmark, the Christoffel tensor is computed with the
MATLAB MTEX toolbox 4.5.0 (Mainprice et al., 2011).

A2. Backus solution for isotropic layers

The Backus average describes the effective stiffness tensor expressed as below (Backus, 1962):
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where λ and μ are the first and second Lamé constants, indicates the averages of the enclosed properties, weighted arithmetically by the volumetric
proportions. The stiffness tensor writes:
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Therefore, the seismic wave velocity can be computed with Cij
Backus in different directions, either parallel ([100], [010]) or perpendicular ([001])

to the layering.
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